我正在尝试使用Tensor Flow构建一个简单的逻辑回归,但是却遇到了这个错误:

TypeError: 'Series' objects are mutable, thus they cannot be hashed


这是我的代码:

data = pd.read_csv(data_file,sep=";",names=header)
...
n = data.shape[0]
n_training_set = int(.7*n)
df_train = data[30:n_training_set]
df_test = data[n_training_set:]

LABEL_COLUMN = 'action'


CONTINUOUS_COLUMNS = ['rsi','stochk','stochd']
CATEGORICAL_COLUMNS = []

def input_fn(df):
  # Creates a dictionary mapping from each continuous feature column name (k) to
  # the values of that column stored in a constant Tensor.
  continuous_cols = {k: tf.constant(df[k].values)
                     for k in CONTINUOUS_COLUMNS}
  # Creates a dictionary mapping from each categorical feature column name (k)
  # to the values of that column stored in a tf.SparseTensor.
  categorical_cols = {k: tf.SparseTensor(
      indices=[[i, 0] for i in range(df[k].size)],
      values=df[k].values,
      dense_shape=[df[k].size, 1])
                      for k in CATEGORICAL_COLUMNS}
  # Merges the two dictionaries into one.
  feature_cols = dict(continuous_cols.items() + categorical_cols.items())
  # Converts the label column into a constant Tensor.
  label = tf.constant(df[LABEL_COLUMN].values)
  # Returns the feature columns and the label.
  return feature_cols, label


def train_input_fn():
  return input_fn(df_train)

def eval_input_fn():
  return input_fn(df_test)

model_dir = tempfile.mkdtemp()

CONTINUOUS_COLUMNS = ['rsi','stochk','stochd']

rsi = tf.contrib.layers.real_valued_column(df_train["rsi"])
stochk = tf.contrib.layers.real_valued_column(df_train["stochk"])
stochd = tf.contrib.layers.real_valued_column(df_train["stochd"])

### defining the model
m = tf.contrib.learn.LinearClassifier(feature_columns=[
        rsi,
        stochk,
        stochd

    ],
  model_dir=model_dir)


m.fit(input_fn=train_input_fn, steps=200)


我怎样才能解决这个问题?

最佳答案

您的错误就在附近:

rsi = tf.contrib.layers.real_valued_column(df_train["rsi"])
stochk = tf.contrib.layers.real_valued_column(df_train["stochk"])
stochd = tf.contrib.layers.real_valued_column(df_train["stochd"])


在这里,您将熊猫数据帧中的一列作为第一个参数传递,但是tot real_valued_column的第一个参数应该是该列的名称。因此,将以上行替换为:

rsi = tf.contrib.layers.real_valued_column("rsi")
stochk = tf.contrib.layers.real_valued_column("stochk")
stochd = tf.contrib.layers.real_valued_column("stochd")


应该是把戏。

另请参阅本教程的section

关于python - Tensorflow TypeError:'系列'对象是可变的,因此不能被散列,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/45259726/

10-12 19:48