我有以下MultiIndex数据框。

                         Close     ATR
Date          Symbol
1990-01-01    A          24        2
1990-01-01    B          72        7
1990-01-01    C          40        3.4

1990-01-02    A          21        1.5
1990-01-02    B          65        6
1990-01-02    C          45        4.2

1990-01-03    A          19        2.5
1990-01-03    B          70        6.3
1990-01-03    C          51        5


我想计算三列:


Shares =前一天的Equity * 0.02 / ATR,四舍五入为整数
Profit = Shares * Close
Equity =前一天的Equity +每个ProfitSymbol总和


Equity的初始值为10,000。

预期输出为:

                         Close     ATR     Shares     Profit     Equity
Date          Symbol
1990-01-01    A          24        2       0          0          10000
1990-01-01    B          72        7       0          0          10000
1990-01-01    C          40        3.4     0          0          10000

1990-01-02    A          21        1.5     133        2793       17053
1990-01-02    B          65        6       33         2145       17053
1990-01-02    C          45        4.2     47         2115       17053

1990-01-03    A          19        2.5     136        2584       26885
1990-01-03    B          70        6.3     54         3780       26885
1990-01-03    C          51        5       68         3468       26885


我想我需要将for loopfunction应用于每一行。有了这些,我有两个问题。一个是我不确定在for loop数据帧的情况下如何为此逻辑创建MultiIndex。第二个原因是我的数据框非常大(大约一千万行),所以我不确定for loop是否是一个好主意。但是,如何创建这些列?

最佳答案

该解决方案肯定可以清除,但会产生所需的输出。我已将您的初始条件包括在示例数据帧的构造中:

import pandas as pd
import numpy as np

df = pd.DataFrame({'Date': ['1990-01-01','1990-01-01','1990-01-01','1990-01-02','1990-01-02','1990-01-02','1990-01-03','1990-01-03','1990-01-03'],
    'Symbol': ['A','B','C','A','B','C','A','B','C'],
    'Close': [24, 72, 40, 21, 65, 45, 19, 70, 51],
    'ATR': [2, 7, 3.4, 1.5, 6, 4.2, 2.5, 6.3, 5],
    'Shares': [0, 0, 0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
    'Profit': [0, 0, 0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]})


给出:

         Date Symbol  Close  ATR  Shares  Profit
0  1990-01-01      A     24  2.0     0.0     0.0
1  1990-01-01      B     72  7.0     0.0     0.0
2  1990-01-01      C     40  3.4     0.0     0.0
3  1990-01-02      A     21  1.5     NaN     NaN
4  1990-01-02      B     65  6.0     NaN     NaN
5  1990-01-02      C     45  4.2     NaN     NaN
6  1990-01-03      A     19  2.5     NaN     NaN
7  1990-01-03      B     70  6.3     NaN     NaN
8  1990-01-03      C     51  5.0     NaN     NaN


然后将groupby()apply()一起使用,并全局跟踪您的Equity。我花了一秒钟的时间意识到这个问题的性质要求您分别对两个单独的列(SymbolDate)进行分组:

start = 10000
Equity = 10000

def calcs(x):

    global Equity

    if x.index[0]==0: return x #Skip first group

    x['Shares'] = np.floor(Equity*0.02/x['ATR'])
    x['Profit'] = x['Shares']*x['Close']
    Equity += x['Profit'].sum()

    return x

df = df.groupby('Date').apply(calcs)
df['Equity'] = df.groupby('Date')['Profit'].transform('sum')
df['Equity'] = df.groupby('Symbol')['Equity'].cumsum()+start


这产生:

         Date Symbol  Close  ATR  Shares  Profit   Equity
0  1990-01-01      A     24  2.0     0.0     0.0  10000.0
1  1990-01-01      B     72  7.0     0.0     0.0  10000.0
2  1990-01-01      C     40  3.4     0.0     0.0  10000.0
3  1990-01-02      A     21  1.5   133.0  2793.0  17053.0
4  1990-01-02      B     65  6.0    33.0  2145.0  17053.0
5  1990-01-02      C     45  4.2    47.0  2115.0  17053.0
6  1990-01-03      A     19  2.5   136.0  2584.0  26885.0
7  1990-01-03      B     70  6.3    54.0  3780.0  26885.0
8  1990-01-03      C     51  5.0    68.0  3468.0  26885.0

关于python - 如何使用Pandas MultiIndex DataFrame中的先前值进行计算?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/53157691/

10-12 20:25