我想将Python词典列表转换为SciPy稀疏矩阵。
我知道我可以使用sklearn.feature_extraction.DictVectorizer.fit_transform()
:
import sklearn.feature_extraction
feature_dictionary = [{"feat1": 1.5, "feat10": 0.5},
{"feat4": 2.1, "feat5": 0.3, "feat7": 0.1},
{"feat2": 7.5}]
v = sklearn.feature_extraction.DictVectorizer(sparse=True, dtype=float)
X = v.fit_transform(feature_dictionary)
print('X: \n{0}'.format(X))
输出:
X:
(0, 0) 1.5
(0, 1) 0.5
(1, 3) 2.1
(1, 4) 0.3
(1, 5) 0.1
(2, 2) 7.5
但是,我希望
feat1
在第1列中,在feat10
在第10列中,在feat4
在第4列中,依此类推。我该如何实现? 最佳答案
您可以手动设置sklearn.feature_extraction.DictVectorizer.vocabulary_
和sklearn.feature_extraction.DictVectorizer.fit.feature_names_
,而不是通过sklearn.feature_extraction.DictVectorizer.fit()
学习它们:
import sklearn.feature_extraction
feature_dictionary = [{"feat1": 1.5, "feat10": 0.5}, {"feat4": 2.1, "feat5": 0.3, "feat7": 0.1}, {"feat2": 7.5}]
v = sklearn.feature_extraction.DictVectorizer(sparse=True, dtype=float)
v.vocabulary_ = {'feat0': 0, 'feat1': 1, 'feat2': 2, 'feat3': 3, 'feat4': 4, 'feat5': 5,
'feat6': 6, 'feat7': 7, 'feat8': 8, 'feat9': 9, 'feat10': 10}
v.feature_names_ = ['feat0', 'feat1', 'feat2', 'feat3', 'feat4', 'feat5', 'feat6', 'feat7',
'feat8', 'feat9', 'feat10']
X = v.transform(feature_dictionary)
print('v.vocabulary_ : {0} ; v.feature_names_: {1}'.format(v.vocabulary_, v.feature_names_))
print('X: \n{0}'.format(X))
输出:
X:
(0, 1) 1.5
(0, 10) 0.5
(1, 4) 2.1
(1, 5) 0.3
(1, 7) 0.1
(2, 2) 7.5
显然,您不必手动定义
vocabulary_
和feature_names_
:v.vocabulary_ = {}
v.feature_names_ = []
number_of_features = 11
for feature_number in range(number_of_features):
feature_name = 'feat{0}'.format(feature_number)
v.vocabulary_[feature_name] = feature_number
v.feature_names_.append(feature_name)
print('v.vocabulary_ : {0} ; v.feature_names_: {1}'.format(v.vocabulary_, v.feature_names_))
输出:
v.vocabulary_ : {'feat10': 10, 'feat9': 9, 'feat8': 8, 'feat5': 5, 'feat4': 4, 'feat7': 7,
'feat6': 6, 'feat1': 1, 'feat0': 0, 'feat3': 3, 'feat2': 2}
v.feature_names_: ['feat0', 'feat1', 'feat2', 'feat3', 'feat4', 'feat5', 'feat6', 'feat7',
'feat8', 'feat9', 'feat10']