我在NLTK和Spacy上的以下句子中使用了NER,以下是结果:

"Zoni I want to find a pencil, a eraser and a sharpener"


我在Google Colab上运行了以下代码。

import nltk
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
from nltk.tokenize import word_tokenize
from nltk.tag import pos_tag

ex = "Zoni I want to find a pencil, a eraser and a sharpener"

def preprocess(sent):
    sent = nltk.word_tokenize(sent)
    sent = nltk.pos_tag(sent)
    return sent

sent = preprocess(ex)
sent

#Output:
[('Zoni', 'NNP'),
 ('I', 'PRP'),
 ('want', 'VBP'),
 ('to', 'TO'),
 ('find', 'VB'),
 ('a', 'DT'),
 ('pencil', 'NN'),
 (',', ','),
 ('a', 'DT'),
 ('eraser', 'NN'),
 ('and', 'CC'),
 ('a', 'DT'),
 ('sharpener', 'NN')]


但是当我在同一文本上使用spacy时,它没有返回任何结果

import spacy
from spacy import displacy
from collections import Counter
import en_core_web_sm
nlp = en_core_web_sm.load()

text = "Zoni I want to find a pencil, a eraser and a sharpener"

doc = nlp(text)
doc.ents

#Output:
()


它仅适用于某些句子。

import spacy
from spacy import displacy
from collections import Counter
import en_core_web_sm
nlp = en_core_web_sm.load()

# text = "Zoni I want to find a pencil, a eraser and a sharpener"

text = 'European authorities fined Google a record $5.1 billion on Wednesday for abusing its power in the mobile phone market and ordered the company to alter its practices'

doc = nlp(text)
doc.ents

#Output:
(European, Google, $5.1 billion, Wednesday)


请告诉我是否有问题。

最佳答案

空间模型是统计的。因此,这些模型可以识别的命名实体取决于训练这些模型的数据集。

根据spacy文档,命名实体是分配了名称的“现实对象”,例如,人物,国家/地区,产品或书名。

例如,名称Zoni并不常见,因此模型无法将其识别为命名实体(人)。如果我在您的句子保留语中将佐尼(Zoni)的名字改为威廉(William),请认出威廉是一个人。

import spacy
nlp = spacy.load('en_core_web_lg')

doc = nlp('William I want to find a pencil, a eraser and a sharpener')

for entity in doc.ents:
  print(entity.label_, ' | ', entity.text)
  #output
  PERSON  |  William


人们会假设铅笔,橡皮和卷笔刀是对象,因此它们有可能被归类为产品,因为spaa documentation指出“对象”是产品。但是,句子中的3个对象似乎并非如此。

我还注意到,如果在输入文本中找不到命名实体,那么输出将为空。

import spacy
nlp = spacy.load("en_core_web_lg")

doc = nlp('Zoni I want to find a pencil, a eraser and a sharpener')
if not doc.ents:
  print ('No named entities were recognized in the input text.')
else:
  for entity in doc.ents:
    print(entity.label_, ' | ', entity.text)

10-01 20:19