myFoldl :: (a -> b -> a) -> a -> [b] -> a
myFoldl f z xs = foldr step id xs z
where step x g a = g (f a x)
我目前正在阅读一本关于 Haskell 的书。在其中,它编写了自己版本的 foldl 函数,但在 foldr 方面。我不跟。
最佳答案
当展开 foldr step id xs z
的表达式时,事情将变得明显:
正如亚当·斯密在评论中所说:
首先考虑 foldr step id xs
foldr step id xs
= x1 `step` (foldr step id xs1)
= x1 `step` (x2 `step` (foldr step id xs2))
...
= x1 `step` (x2 `step` ... (xn `step` (foldr step id []))...)
= x1 `step` (x2 `step` ... (xn `step` id)...)
在哪里
xs = (x1:xs1)
xs1 = (x2:xs2), xs = (x1:x2:xs2)
....
xsn = (xn:[]), xs = (x1:x2...xsn) respectively
现在,将上述函数与参数 z 一起应用,即
(x1 `step` (x2 `step` ... (xn `step` id)...)) z
然后让
g = (x2 `step` ... (xn `step` id)...)
给
(x1 `step` g) z
IE。
(step x1 g) z
现在应用 foldl 的 where 部分:
给
(step x1 g) z = step x1 g z = g (step z x1)
在哪里
g (step z x1) = (x2 `step` (x3 step ... (xn `step` id)...) (step z x1)
让
g' = (x3 step ... (xn `step` id)...)
给
(x2 `step` g') (step z x1)
= step x2 g' (step z x1)
= g' (step (step z x1) x2))
= (x3 step ... (xn `step` id)...) (step (step z x1) x2))
重复相同的步骤,最后我们有,
(xn `step` id) (step ....(step (step z x1) x2)....)
= step xn id (step ....(step (step z x1) x2)....)
= id (step (step ....(step (step z x1) x2)....) xn)
= (step (step ....(step (step z x1) x2)....) xn)
= foldl step z xs
现在,很明显为什么要使用 id 函数。最后,看看为什么
foldl step z xs = (step (step ....(step (step z x1) x2)....) xn)
初始案例:
foldl step z' [] = z'
递归案例:
foldl step z (x1:xs1)
= foldl step (step z x1) xs1
= foldl step (step (step z x1) x2) xs2
...
= foldl step (step (step ....(step (step z x1) x2)....) xn) []
= (step (step ....(step (step z x1) x2)....) xn)
在哪里
z' = (step (step ....(step (step z x1) x2)....) xn) in initial case
和上面一样。
关于haskell - 根据 foldr 定义 foldl,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/53057923/