在使用DCG解析3 GB的大文件时,效率至关重要。

我的词法分析器的当前版本主要使用or或谓词;/2,但我读到索引可以提供帮助。



有人可以举一个使用索引进行词法化的例子,并可能解释一下它如何提高效率吗?

细节

注意:在将源代码处理到此问题之前,我更改了一些名称。如果您发现错误,请随时在此处进行编辑或给我留言,我们将很乐意解决。

目前,我的词法分析器/标记器(基于mzapotoczny/prolog-interpreter parser.pl)是这个

% N.B.
% Since the lexer uses "" for values, the double_quotes flag has to be set to `chars`.
% If double_quotes flag is set to `code`, the the values with "" will not be matched.

:- use_module(library(pio)).
:- use_module(library(dcg/basics)).
:- set_prolog_flag(double_quotes,chars).

lexer(Tokens) -->
   white_space,
   (
       (  ":",       !, { Token = tokColon }
      ;  "(",       !, { Token = tokLParen }
      ;  ")",       !, { Token = tokRParen }
      ;  "{",       !, { Token = tokLMusta}
      ;  "}",       !, { Token = tokRMusta}
      ;  "\\",      !, { Token = tokSlash}
      ;  "->",      !, { Token = tokImpl}
      ;  "+",       !, { Token = tokPlus }
      ;  "-",       !, { Token = tokMinus }
      ;  "*",       !, { Token = tokTimes }
      ;  "=",       !, { Token = tokEqual }
      ;  "<",       !, { Token = tokLt }
      ;  ">",       !, { Token = tokGt }
      ;  "_",       !, { Token = tokUnderscore }
      ;  ".",       !, { Token = tokPeriod }
      ;  "/",       !, { Token = tokForwardSlash }
      ;  ",",       !, { Token = tokComma }
      ;  ";",       !, { Token = tokSemicolon }
      ;  digit(D),  !,
            number(D, N),
            { Token = tokNumber(N) }
      ;  letter(L), !, identifier(L, Id),
            {  member((Id, Token), [ (div, tokDiv),
                                     (mod, tokMod),
                                     (where, tokWhere)]),
               !
            ;  Token = tokVar(Id)
            }
      ;  [_],
            { Token = tokUnknown }
      ),
      !,
      { Tokens = [Token | TokList] },
      lexer(TokList)
   ;  [],
         { Tokens = [] }
   ).

white_space -->
   [Char], { code_type(Char, space) }, !, white_space.
white_space -->
    "--", whole_line, !, white_space.
white_space -->
   [].

whole_line --> "\n", !.
whole_line --> [_], whole_line.

digit(D) -->
   [D],
      { code_type(D, digit) }.

digits([D|T]) -->
   digit(D),
   !,
   digits(T).
digits([]) -->
   [].

number(D, N) -->
   digits(Ds),
      { number_chars(N, [D|Ds]) }.

letter(L) -->
   [L], { code_type(L, alpha) }.

alphanum([A|T]) -->
   [A], { code_type(A, alnum) }, !, alphanum(T).
alphanum([]) -->
   [].

alphanum([]).
alphanum([H|T]) :- code_type(H, alpha), alphanum(T).

identifier(L, Id) -->
   alphanum(As),
      { atom_codes(Id, [L|As]) }.

这是用于开发和测试的一些辅助谓词。
read_file_for_lexing_and_user_review(Path) :-
    open(Path,read,Input),
    read_input_for_user_review(Input), !,
    close(Input).

read_file_for_lexing_and_performance(Path,Limit) :-
    open(Path,read,Input),
    read_input_for_performance(Input,0,Limit), !,
    close(Input).

read_input(Input) :-
    at_end_of_stream(Input).

read_input(Input) :-
    \+ at_end_of_stream(Input),
    read_string(Input, "\n", "\r\t ", _, Line),
    lex_line(Line),
    read_input(Input).

read_input_for_user_review(Input) :-
    at_end_of_stream(Input).

read_input_for_user_review(Input) :-
    \+ at_end_of_stream(Input),
    read_string(Input, "\n", "\r\t ", _, Line),
    lex_line_for_user_review(Line),
    nl,
    print('Press spacebar to continue or any other key to exit: '),
    get_single_char(Key),
    process_user_continue_or_exit_key(Key,Input).

read_input_for_performance(Input,Count,Limit) :-
    Count >= Limit.

read_input_for_performance(Input,_,_) :-
    at_end_of_stream(Input).

read_input_for_performance(Input,Count0,Limit) :-
    % print(Count0),
    \+ at_end_of_stream(Input),
    read_string(Input, "\n", "\r\t ", _, Line),
    lex_line(Line),
    Count is Count0 + 1,
    read_input_for_performance(Input,Count,Limit).

process_user_continue_or_exit_key(32,Input) :-  % space bar
    nl, nl,
    read_input_for_user_review(Input).

process_user_continue_or_exit_key(Key) :-
    Key \= 32.

lex_line_for_user_review(Line) :-
    lex_line(Line,TokList),
    print(Line),
    nl,
    print(TokList),
    nl.

lex_line(Line,TokList) :-
    string_chars(Line,Code_line),
    phrase(lexer(TokList),Code_line).

lex_line(Line) :-
    string_chars(Line,Code_line),
    phrase(lexer(TokList),Code_line).

read_user_input_for_lexing_and_user_review :-
    print('Enter a line to parse or just Enter to exit: '),
    nl,
    read_string(user, "\n", "\r", _, String),
    nl,
    lex_line_for_user_review(String),
    nl,
    continue_user_input_for_lexing_and_user_review(String).

continue_user_input_for_lexing_and_user_review(String) :-
    string_length(String,N),
    N > 0,
    read_user_input_for_lexing_and_user_review.

continue_user_input_for_lexing_and_user_review(String) :-
    string_length(String,0).
read_user_input_for_lexing_and_user_review/0允许用户在终端上输入字符串以进行词法化并查看 token 。
read_file_for_lexing_and_user_review/1读取文件以进行词法分析,并一次查看每一行的标记。
read_file_for_lexing_and_performance/2读取要进行词法化的文件,但要限制词法的行数。这用于收集基本性能统计信息以衡量效率。打算与time/1一起使用。

最佳答案

解决方案:

您应该替换以下内容:

lexer(Tokens) -->
   white_space,
   (
      (  ":",       !, { Token = tokColon }
      ;  "(",       !, { Token = tokLParen }
      ;  ")",       !, { Token = tokRParen }
      ;  "{",       !, { Token = tokLMusta}
      ;  "}",       !, { Token = tokRMusta}
      ;  "\\",      !, { Token = tokSlash}
      ;  "->",      !, { Token = tokImpl}
      ;  "+",       !, { Token = tokPlus }
      ;  "-",       !, { Token = tokMinus }
      ;  "*",       !, { Token = tokTimes }
      ;  "=",       !, { Token = tokEqual }
      ;  "<",       !, { Token = tokLt }
      ;  ">",       !, { Token = tokGt }
      ;  "_",       !, { Token = tokUnderscore }
      ;  ".",       !, { Token = tokPeriod }
      ;  "/",       !, { Token = tokForwardSlash }
      ;  ",",       !, { Token = tokComma }
      ;  ";",       !, { Token = tokSemicolon }
      ;  digit(D),  !,
            number(D, N),
            { Token = tokNumber(N) }
      ;  letter(L), !, identifier(L, Id),
            {  member((Id, Token), [ (div, tokDiv),
                                     (mod, tokMod),
                                     (where, tokWhere)]),
               !
            ;  Token = tokVar(Id)
            }
      ;  [_],
            { Token = tokUnknown }
      ),
      !,
      { Tokens = [Token | TokList] },
      lexer(TokList)
   ;  [],
         { Tokens = [] }
   ).


lexer(Tokens) -->
   white_space,
   (
      (
         op_token(Token), ! % replace ;/2 long chain searched blindly with call to new predicate op_token//1 which clauses have indexed access by first arg in Prolog standard way
      ;
         digit(D),  !, number(D, N),
         { Token = tokNumber(N) }
      ;  letter(L), !, identifier(L, Id),
         {  member((Id, Token), [ (div, tokDiv),
                                 (mod, tokMod),
                                 (where, tokWhere)]),
            !
      ;  Token = tokVar(Id)
         }
      ;  [_],
         { Token = tokUnknown }
      ),
      !,
      { Tokens = [Token | TokList] },
      lexer(TokList)
   ;
      [],
      { Tokens = [] }
   ).

%%%
op_token(tokColon)      --> ";".
op_token(tokLParen)     --> "(".
op_token(tokRParen)     --> ")".
op_token(tokLMusta)     --> "{".
op_token(tokRMusta)     --> "}".
op_token(tokBackSlash)  --> "\\".
op_token(tokImpl)       --> "->".
op_token(tokPlus)       --> "+".
op_token(tokMinus)      --> "-".
op_token(tokTimes)      --> "*".
op_token(tokEqual)      --> "=".
op_token(tokLt)         --> "<".
op_token(tokGt)         --> ">".
op_token(tokUnderscore) --> "_".
op_token(tokPeriod)     --> ".".
op_token(tokSlash)      --> "/".
op_token(tokComma)      --> ",".
op_token(tokSemicolon)  --> ";".

由Guy Coder编辑

我使用问题中发布的示例数据将其运行到一个列表中,其中列表中的每个项目都是数据中转换为字符代码的一行。然后在列表中的每个项目上使用time/1调用lexer,并对该列表重复测试10000次。将数据加载到列表中并在time/1之前转换为字符代码的原因是为了使这些进程不会使结果倾斜。将这些运行中的每一次重复5次以获取数据的一致性。

在下面的以下运行中,针对所有不同版本的词法分析器均进行了扩展,以涵盖所有7位ASCII字符,这大大增加了特殊字符的字符数。

用于以下目的的Prolog版本是SWI-Prolog 8.0。

对于问题中的版本。
Version: 1

:- set_prolog_flag(double_quotes,chars).

% 694,080,002 inferences, 151.141 CPU in 151.394 seconds (100% CPU, 4592280 Lips)
% 694,080,001 inferences, 150.813 CPU in 151.059 seconds (100% CPU, 4602271 Lips)
% 694,080,001 inferences, 152.063 CPU in 152.326 seconds (100% CPU, 4564439 Lips)
% 694,080,001 inferences, 151.141 CPU in 151.334 seconds (100% CPU, 4592280 Lips)
% 694,080,001 inferences, 151.875 CPU in 152.139 seconds (100% CPU, 4570074 Lips)

对于以上在此答案中发布的版本
Version: 2

:- set_prolog_flag(double_quotes,chars).

% 773,260,002 inferences, 77.469 CPU in 77.543 seconds (100% CPU, 9981573 Lips)
% 773,260,001 inferences, 77.344 CPU in 77.560 seconds (100% CPU, 9997705 Lips)
% 773,260,001 inferences, 77.406 CPU in 77.629 seconds (100% CPU, 9989633 Lips)
% 773,260,001 inferences, 77.891 CPU in 77.967 seconds (100% CPU, 9927511 Lips)
% 773,260,001 inferences, 78.422 CPU in 78.644 seconds (100% CPU, 9860259 Lips)

通过使用版本1中的索引,版本2进行了重大改进。

在对代码进行进一步研究时,使用DCG来查看op_token,它是listing/1并具有两个用于隐式传递状态表示的隐藏变量,结果显示:
op_token(tokUnderscore,['_'|A], A).

注意,第一个参数不是要搜索的字符,在此answer中,索引代码写为
c_digit(0'0,0).

其中第一个参数是要搜索的字符,第二个参数是结果。

所以改变这个
op_token(Token), !

对此
[S], { special_character_indexed(S,Token) }

带有索引子句为
special_character_indexed( ';' ,tokSemicolon).

版本:3
:- set_prolog_flag(double_quotes,chars).

% 765,800,002 inferences, 74.125 CPU in 74.348 seconds (100% CPU, 10331197 Lips)
% 765,800,001 inferences, 74.766 CPU in 74.958 seconds (100% CPU, 10242675 Lips)
% 765,800,001 inferences, 74.734 CPU in 74.943 seconds (100% CPU, 10246958 Lips)
% 765,800,001 inferences, 74.828 CPU in 75.036 seconds (100% CPU, 10234120 Lips)
% 765,800,001 inferences, 74.547 CPU in 74.625 seconds (100% CPU, 10272731 Lips)

第3版比第2版的效果略好一些,但始终如一。

最后,正如AntonDanilov的评论中所述,将double_quotes标志更改为atom
Version: 4

:- set_prolog_flag(double_quotes,atom).

% 765,800,003 inferences, 84.234 CPU in 84.539 seconds (100% CPU, 9091300 Lips)
% 765,800,001 inferences, 74.797 CPU in 74.930 seconds (100% CPU, 10238396 Lips)
% 765,800,001 inferences, 75.125 CPU in 75.303 seconds (100% CPU, 10193677 Lips)
% 765,800,001 inferences, 75.078 CPU in 75.218 seconds (100% CPU, 10200042 Lips)
% 765,800,001 inferences, 75.031 CPU in 75.281 seconds (100% CPU, 10206414 Lips)

版本4与版本3几乎相同。

仅查看CPU编号,使用索引的速度就更快,例如(版本:1)151.875与(版本:3)74.547

关于performance - 如何提高词汇处理效率?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/54259696/

10-12 14:28