我觉得应该有一个可用的库来更简单地做两件事:a)在双精度情况下找到数组的模式;b)优雅地降低精度,直到达到特定的频率。
想象一下这样的数组:

double[] a = {1.12, 1.15, 1.13, 2.0, 3.4, 3.44, 4.1, 4.2, 4.3, 4.4};

如果我在寻找一个3的频率,那么它将从2个小数点到1个小数点,最后返回1.1作为我的模式如果我有4的频率要求,它会返回4作为我的模式。
我确实有一套按照我希望的方式工作的代码,并且返回我所期望的,但是我觉得应该有一种更有效的方法来完成这一点,或者一个现有的库可以帮助我做到这一点。附件是我的代码,我会对我应该采取的不同方法的想法/评论感兴趣……我列出了迭代,以限制精度会降低多少。
public static double findMode(double[] r, int frequencyReq)
{
    double mode = 0d;
    int frequency = 0;
    int iterations = 4;

    HashMap<Double, BigDecimal> counter = new HashMap<Double, BigDecimal>();

    while(frequency < frequencyReq && iterations > 0){
        String roundFormatString = "#.";
        for(int j=0; j<iterations; j++){
            roundFormatString += "#";
        }
        DecimalFormat roundFormat = new DecimalFormat(roundFormatString);
        for(int i=0; i<r.length; i++){

            double element = Double.valueOf(roundFormat.format(r[i]));

            if(!counter.containsKey(element))
                counter.put(element, new BigDecimal(0));

            counter.put(element,counter.get(element).add(new BigDecimal(1)));
        }

        for(Double key : counter.keySet()){

            if(counter.get(key).compareTo(new BigDecimal(frequency))>0){
                mode = key;
                frequency = counter.get(key).intValue();
                log.debug("key: " + key + " Count: " + counter.get(key));
            }
        }
        iterations--;
    }

    return mode;
}

编辑
另一种重新表述这个问题的方法是,根据保罗的评论:目标是找到一个在邻域中至少有frequency数组元素的数字,邻域的半径尽可能小。

最佳答案

这里是重新制定的问题的解决办法:
目标是在邻域中至少有frequency个数组元素的地方定位一个数字,邻域的半径尽可能小。
(我获得了在输入数组中切换1.151.13顺序的自由。)
基本思想是:我们已经对输入进行了排序(即相邻元素是连续的),并且我们知道在我们的邻域中需要多少元素。所以我们在这个数组上循环一次,测量左边元素和右边元素之间的距离它们之间是frequency元素,所以这形成了一个邻域。然后我们取最小的距离。(我的方法返回结果的方式很复杂,您可能希望做得更好。)
这并不完全等同于你最初的问题(不适用于固定的数字步数),但也许这是你真正想要的:-)
不过,你必须找到一种更好的格式化结果的方法。

package de.fencing_game.paul.examples;

import java.util.Arrays;

/**
 * searching of dense points in a distribution.
 *
 * Inspired by http://stackoverflow.com/questions/5329628/finding-a-mode-with-decreasing-precision.
 */
public class InpreciseMode {

    /** our input data, should be sorted ascending. */
    private double[] data;

    public InpreciseMode(double ... data) {
        this.data = data;
    }


    /**
     * searchs the smallest neighbourhood (by diameter) which
     * contains at least minSize elements.
     *
     * @return an array of two arrays:
     *     {   { the middle point of the neighborhood,
     *           the diameter of the neighborhood  },
     *        all the elements of the neigborhood }
     *
     * TODO: better return an object of a class encapsuling these.
     */
    public double[][] findSmallNeighbourhood(int minSize) {
        int currentLeft = -1;
        int currentRight = -1;
        double currentMinDiameter = Double.POSITIVE_INFINITY;

        for(int i = 0; i + minSize-1 < data.length; i++) {
            double diameter = data[i+minSize-1] - data[i];
            if(diameter < currentMinDiameter) {
                currentMinDiameter = diameter;
                currentLeft = i;
                currentRight = i + minSize-1;
            }
        }
        return
            new double[][] {
            {
                (data[currentRight] + data[currentLeft])/2.0,
                currentMinDiameter
            },
            Arrays.copyOfRange(data, currentLeft, currentRight+1)
        };
    }

    public void printSmallNeighbourhoods() {
        for(int frequency = 2; frequency <= data.length; frequency++) {
            double[][] found = findSmallNeighbourhood(frequency);

            System.out.printf("There are %d elements in %f radius "+
                              "around %f:%n     %s.%n",
                              frequency, found[0][1]/2, found[0][0],
                              Arrays.toString(found[1]));
        }
    }


    public static void main(String[] params) {
        InpreciseMode m =
            new InpreciseMode(1.12, 1.13, 1.15, 2.0, 3.4, 3.44, 4.1,
                              4.2, 4.3, 4.4);
        m.printSmallNeighbourhoods();
    }

}

输出是
There are 2 elements in 0,005000 radius around 1,125000:
     [1.12, 1.13].
There are 3 elements in 0,015000 radius around 1,135000:
     [1.12, 1.13, 1.15].
There are 4 elements in 0,150000 radius around 4,250000:
     [4.1, 4.2, 4.3, 4.4].
There are 5 elements in 0,450000 radius around 3,850000:
     [3.4, 3.44, 4.1, 4.2, 4.3].
There are 6 elements in 0,500000 radius around 3,900000:
     [3.4, 3.44, 4.1, 4.2, 4.3, 4.4].
There are 7 elements in 1,200000 radius around 3,200000:
     [2.0, 3.4, 3.44, 4.1, 4.2, 4.3, 4.4].
There are 8 elements in 1,540000 radius around 2,660000:
     [1.12, 1.13, 1.15, 2.0, 3.4, 3.44, 4.1, 4.2].
There are 9 elements in 1,590000 radius around 2,710000:
     [1.12, 1.13, 1.15, 2.0, 3.4, 3.44, 4.1, 4.2, 4.3].
There are 10 elements in 1,640000 radius around 2,760000:
     [1.12, 1.13, 1.15, 2.0, 3.4, 3.44, 4.1, 4.2, 4.3, 4.4].

10-08 14:07