我希望在对数下降曲线上进行梯度下降,如下所示:

y = y0-a * ln(b + x)。

我的本例的y0:800

我试图使用相对于a和b的偏导数来做到这一点,但是尽管这显然使平方误差最小,但它不会收敛。我知道这不是矢量化的,并且我可能完全采用了错误的方法。我是在犯一个简单的错误,还是完全没有解决这个问题?

import numpy as np

# constants my gradient descent model should find:
a = 4
b = 4

# function to fit on!
def function(x, a, b):
    y0 = 800
    return y0 - a * np.log(b + x)

# Generates data
def gen_data(numpoints):
    a = 4
    b = 4
    x = np.array(range(0, numpoints))
    y = function(x, a, b)
    return x, y
x, y = gen_data(600)

def grad_model(x, y, iterations):
    converged = False

    # length of dataset
    m = len(x)

    # guess   a ,  b
    theta = [0.1, 0.1]
    alpha = 0.001

    # initial error
    e = np.sum((np.square(function(x, theta[0], theta[1])) - y))

    for iteration in range(iterations):
        hypothesis = function(x, theta[0], theta[1])
        loss = hypothesis - y

        # compute partial deritaves to find slope to "fall" into
        theta0_grad = (np.mean(np.sum(-np.log(x + y)))) / (m)
        theta1_grad = (np.mean((((np.log(theta[1] + x)) / theta[0]) - (x*(np.log(theta[1] + x)) / theta[0])))) / (2*m)

        theta0 = theta[0] - (alpha * theta0_grad)
        theta1 = theta[1] - (alpha * theta1_grad)

        theta[1] = theta1
        theta[0] = theta0

        new_e = np.sum(np.square((function(x, theta[0], theta[1])) - y))
        if new_e > e:
            print "AHHHH!"
            print "Iteration: "+ str(iteration)
            break
        print theta
    return theta[0], theta[1]

最佳答案

我在您的代码中发现了一些错误。线

e = np.sum((np.square(function(x, theta[0], theta[1])) - y))


不正确,应替换为

e = np.sum((np.square(function(x, theta[0], theta[1]) - y)))


new_e的公式包含相同的错误。

同样,梯度公式是错误的。您的损失函数是
$ L(a,b)= \ sum_ {i = 1} ^ N y_0-a \ log(b + x_i)$,
因此您必须针对$ a $和$ b $计算$ L $的偏导数。 (LaTeX真的不能在stackoverflow上工作吗?)最后一点是,梯度下降法具有步长限制,因此步长不能太大。这是您的代码效果更好的一个版本:

import numpy as np
import matplotlib.pyplot as plt

# constants my gradient descent model should find:
a = 4.0
b = 4.0
y0 = 800.0

# function to fit on!
def function(x, a, b):
    # y0 = 800
    return y0 - a * np.log(b + x)

# Generates data
def gen_data(numpoints):
    # a = 4
    # b = 4
    x = np.array(range(0, numpoints))
    y = function(x, a, b)
    return x, y
x, y = gen_data(600)

def grad_model(x, y, iterations):
    converged = False

    # length of dataset
    m = len(x)

    # guess   a ,  b
    theta = [0.1, 0.1]
    alpha = 0.00001

    # initial error
    # e = np.sum((np.square(function(x, theta[0], theta[1])) - y))    #  This was a bug
    e = np.sum((np.square(function(x, theta[0], theta[1]) - y)))

    costs = np.zeros(iterations)

    for iteration in range(iterations):
        hypothesis = function(x, theta[0], theta[1])
        loss = hypothesis - y

        # compute partial deritaves to find slope to "fall" into
        # theta0_grad = (np.mean(np.sum(-np.log(x + y)))) / (m)
        # theta1_grad = (np.mean((((np.log(theta[1] + x)) / theta[0]) - (x*(np.log(theta[1] + x)) / theta[0])))) / (2*m)
        theta0_grad = 2*np.sum((y0 - theta[0]*np.log(theta[1] + x) - y)*(-np.log(theta[1] + x)))
        theta1_grad = 2*np.sum((y0 - theta[0]*np.log(theta[1] + x) - y)*(-theta[0]/(b + x)))

        theta0 = theta[0] - (alpha * theta0_grad)
        theta1 = theta[1] - (alpha * theta1_grad)

        theta[1] = theta1
        theta[0] = theta0

        # new_e = np.sum(np.square((function(x, theta[0], theta[1])) - y)) # This was a bug
        new_e = np.sum(np.square((function(x, theta[0], theta[1]) - y)))
        costs[iteration] = new_e
        if new_e > e:
            print "AHHHH!"
            print "Iteration: "+ str(iteration)
            # break
        print theta
    return theta[0], theta[1], costs

(theta0,theta1,costs) = grad_model(x,y,100000)
plt.semilogy(costs)

关于python - Python对数下降曲线上的梯度下降,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/41156384/

10-12 18:24