This is my project佛罗伦萨大学的AI课程。我必须解决一个经典的游戏:8和15格的滑动拼图。
这是我对通用图搜索算法的实现:
public abstract class GraphSearch implements SearchAlgorithm {
protected Queue<Node> fringe;
protected HashSet<Node> closedList;
public GraphSearch() {
fringe = createFringe();
closedList = new HashSet<Node>(100);
}
protected abstract Queue<Node> createFringe();
public int getNodeExpanded() {
return closedList.size();
}
@Override
public Solution search(Puzzle puzzle) {
fringe.add(new Node(puzzle.getInitialState(), null, null));
while (!fringe.isEmpty()) {
Node selectedNode = fringe.poll();
if (puzzle.getGoalTest().isGoalState(selectedNode.getState())) {
return new Solution(selectedNode, getNodeExpanded());
}
closedList.add(selectedNode);
LinkedList<Node> expansion = selectedNode.expandNode();
for (Node n : expansion) {
if (!closedList.contains(n) && !fringe.contains(n))
fringe.add(n);
}
}
return new Solution(null, getNodeExpanded());
}
}
这是我的A *代码:
public class AStar extends GraphSearch implements InformedSearch {
private Heuristic heuristic;
public AStar(Heuristic heuristic) {
setHeuristic(heuristic);
}
public Heuristic getHeuristic() {
return heuristic;
}
@Override
public void setHeuristic(Heuristic heuristic) {
this.heuristic = heuristic;
}
@Override
protected Queue<Node> createFringe() {
return new PriorityQueue<Node>(1000, new Comparator<Node>() {
@Override
public int compare(Node o1, Node o2) {
o1.setH(heuristic.h(o1));
o2.setH(heuristic.h(o2));
o1.setF(o1.getG() + o1.getH());
o2.setF(o2.getG() + o2.getH());
if (o1.getF() < o2.getF())
return -1;
if (o1.getF() > o2.getF())
return 1;
return 0;
}
});
}
}
这是我的曼哈顿启发式代码:
@Override
public int h(Node n) {
int distance = 0;
ArrayList<Integer> board = n.getState().getBoard();
int[][] multiBoard = new int[N][N];
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
multiBoard[i][j] = board.get(i * N + j);
}
}
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
int value = multiBoard[i][j];
if (multiBoard[i][j] != 0) {
int targetX = (value - 1) / N;
int targetY = (value - 1) % N;
distance += Math.abs(i - targetX) + Math.abs(j - targetY);
}
}
}
return distance;
}
现在,代码可以正常工作并找到了难题的解决方案(难题状态是N * N值的数组,目标状态为[1、2、3、4、5、6、7、8、9、0](对于N = 3 ),其中空白单元格= 0),但是将结果与其他程序(相同的算法和相同的启发式)进行比较,我的程序扩展了不同数量的节点。我认为一般图形搜索存在问题...有什么想法吗? :D
谢谢!!!
最佳答案
您的启发式计算是错误的。假设9位于电路板的索引4处。您将其rowRight值计算为3而不是2。这将导致算法的最佳性能。您的右行计算应为:int rowRight = (valueFound - 1) / N;
关于java - AI:使用曼哈顿启发式技术进行图搜索和A *实现,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/16664676/