我有一个pandas.DatetimeIndex,例如:

pd.date_range('2012-1-1 02:03:04.000',periods=3,freq='1ms')
>>> [2012-01-01 02:03:04, ..., 2012-01-01 02:03:04.002000]


我想将日期(Timestamp s)舍入到最接近的秒数。我怎么做?预期结果类似于:

[2012-01-01 02:03:04.000000, ..., 2012-01-01 02:03:04.000000]


是否可以通过将Numpy datetime64[ns]舍入为秒而不更改dtype [ns]来实现?

np.array(['2012-01-02 00:00:00.001'],dtype='datetime64[ns]')

最佳答案

更新:如果要对DatetimeIndex / datetime64列执行此操作,更好的方法是直接使用np.round而不是通过apply / map:

np.round(dtindex_or_datetime_col.astype(np.int64), -9).astype('datetime64[ns]')


旧答案(还有更多解释):

@Matti的答案显然是处理您的情况的正确方法,但我想我会添加一个答案,您可以将时间戳记到最接近的秒数:

from pandas.lib import Timestamp

t1 = Timestamp('2012-1-1 00:00:00')
t2 = Timestamp('2012-1-1 00:00:00.000333')

In [4]: t1
Out[4]: <Timestamp: 2012-01-01 00:00:00>

In [5]: t2
Out[5]: <Timestamp: 2012-01-01 00:00:00.000333>

In [6]: t2.microsecond
Out[6]: 333

In [7]: t1.value
Out[7]: 1325376000000000000L

In [8]: t2.value
Out[8]: 1325376000000333000L

# Alternatively: t2.value - t2.value % 1000000000
In [9]: long(round(t2.value, -9)) # round milli-, micro- and nano-seconds
Out[9]: 1325376000000000000L

In [10]: Timestamp(long(round(t2.value, -9)))
Out[10]: <Timestamp: 2012-01-01 00:00:00>


因此,您可以将其应用于整个索引:

def to_the_second(ts):
    return Timestamp(long(round(ts.value, -9)))

dtindex.map(to_the_second)

关于date - 如何舍入 Pandas 的“DatetimeIndex”?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/13785932/

10-11 11:37