我正在尝试使Iris classification matrix example适应Tensorflow的一些基本原理,但我不知道如何打印混淆矩阵。下面是到目前为止的代码和结果。我没有正确创建标签和/或预测,或者我没有正确处理混淆矩阵。任何帮助,将不胜感激!
码
import os
import six.moves.urllib.request as request
import tensorflow as tf
PATH = "/tmp/tf_dataset_and_estimator_apis"
# Fetch and store Training and Test dataset files
PATH_DATASET = PATH + os.sep + "dataset"
FILE_TRAIN = PATH_DATASET + os.sep + "iris_training.csv"
FILE_TEST = PATH_DATASET + os.sep + "iris_test.csv"
URL_TRAIN = "http://download.tensorflow.org/data/iris_training.csv"
URL_TEST = "http://download.tensorflow.org/data/iris_test.csv"
def downloadDataset(url, file):
if not os.path.exists(PATH_DATASET):
os.makedirs(PATH_DATASET)
if not os.path.exists(file):
data = request.urlopen(url).read()
with open(file, "wb") as f:
f.write(data)
f.close()
downloadDataset(URL_TRAIN, FILE_TRAIN)
downloadDataset(URL_TEST, FILE_TEST)
tf.logging.set_verbosity(tf.logging.INFO)
# The CSV features in our training & test data
feature_names = [
'SepalLength',
'SepalWidth',
'PetalLength',
'PetalWidth']
# Create an input function reading a file using the Dataset API
# Then provide the results to the Estimator API
def my_input_fn(file_path, perform_shuffle=False, repeat_count=1):
def decode_csv(line):
parsed_line = tf.decode_csv(line, [[0.], [0.], [0.], [0.], [0]])
label = parsed_line[-1] # Last element is the label
del parsed_line[-1] # Delete last element
features = parsed_line # Everything but last elements are the features
d = dict(zip(feature_names, features)), label
return d
dataset = (tf.data.TextLineDataset(file_path) # Read text file
.skip(1) # Skip header row
.map(decode_csv)) # Transform each elem by applying decode_csv fn
if perform_shuffle:
# Randomizes input using a window of 256 elements (read into memory)
dataset = dataset.shuffle(buffer_size=256)
dataset = dataset.repeat(repeat_count) # Repeats dataset this # times
dataset = dataset.batch(32) # Batch size to use
iterator = dataset.make_one_shot_iterator()
batch_features, batch_labels = iterator.get_next()
return batch_features, batch_labels
next_batch = my_input_fn(FILE_TRAIN, True) # Will return 32 random elements
# Create the feature_columns, which specifies the input to our model
# All our input features are numeric, so use numeric_column for each one
feature_columns = [tf.feature_column.numeric_column(k) for k in feature_names]
# Create a deep neural network regression classifier
# Use the DNNClassifier pre-made estimator
classifier = tf.estimator.DNNClassifier(
feature_columns=feature_columns, # The input features to our model
hidden_units=[10, 10], # Two layers, each with 10 neurons
n_classes=3,
model_dir=PATH) # Path to where checkpoints etc are stored
classifier.train(
input_fn=lambda: my_input_fn(FILE_TRAIN, True, 8))
predictions = list(classifier.predict(input_fn=lambda: my_input_fn(FILE_TEST, False, 1)))
print(
"Test Samples, Raw Predictions: {}\n"
.format(predictions))
predicted_classes = [p["class_ids"][0] for p in predictions]
print(
"Test Samples, Class Predictions: {}\n"
.format(predicted_classes))
labels = []
for line in open(FILE_TEST):
parsed_line = tf.decode_csv(line, [[0.], [0.], [0.], [0.], [0]])
label = parsed_line[-1] # Last element is the label
labels.append(label)
labels = labels[1:]
print(
"Test Samples, Truth Labels: {}\n"
.format(labels))
confusion_matrix = tf.confusion_matrix(labels, predicted_classes,3)
for i in range(len(confusion_matrix)):
for j in range(len(confusion_matrix[i])):
print(confusion_matrix[i][j], end=' ')
print()
结果
Test Samples, Raw Predictions: [{'logits': array([-3.94134641, 5.46653843, -1.10556901], dtype=float32), 'probabilities': array([ 8.19530323e-05, 9.98521388e-01, 1.39677816e-03], dtype=float32), 'class_ids': array([1]), 'classes': array([b'1'], dtype=object)}, {'logits': array([-8.64749146, 0.87616217, 4.89346647], dtype=float32), 'probabilities': array([ 1.29266971e-06, 1.76830795e-02, 9.82315600e-01], dtype=float32), 'class_ids': array([2]), 'classes': array([b'2'], dtype=object)}, {'logits': array([ 12.76192856, 3.94970369, -13.86392498], dtype=float32), 'probabilities': array([ 9.99851108e-01, 1.48879364e-04, 2.73195594e-12], dtype=float32), 'class_ids': array([0]), 'classes': array([b'0'], dtype=object)}, {'logits': array([-3.94899917, 5.2370801 , -0.87788975], dtype=float32), 'probabilities': array([ 1.02219477e-04, 9.97693360e-01, 2.20444612e-03], dtype=float32), 'class_ids': array([1]), 'classes': array([b'1'], dtype=object)}, {'logits': array([-4.18660784, 4.82310486, -0.66269088], dtype=float32), 'probabilities': array([ 1.21697682e-04, 9.95750666e-01, 4.12761979e-03], dtype=float32), 'class_ids': array([1]), 'classes': array([b'1'], dtype=object)}, {'logits': array([-3.49290824, 6.48037815, -2.15846062], dtype=float32), 'probabilities': array([ 4.66186284e-05, 9.99776304e-01, 1.77052832e-04], dtype=float32), 'class_ids': array([1]), 'classes': array([b'1'], dtype=object)}, {'logits': array([ 18.31637955, 2.90756798, -18.32689095], dtype=float32), 'probabilities': array([ 9.99999762e-01, 2.03253521e-07, 1.21907086e-16], dtype=float32), 'class_ids': array([0]), 'classes': array([b'0'], dtype=object)}, {'logits': array([-6.53988791, 2.51767302, 2.30166817], dtype=float32), 'probabilities': array([ 6.45163964e-05, 5.53756475e-01, 4.46179003e-01], dtype=float32), 'class_ids': array([1]), 'classes': array([b'1'], dtype=object)}, {'logits': array([-2.99833608, 6.07995462, -2.14333487], dtype=float32), 'probabilities': array([ 1.14072849e-04, 9.99617696e-01, 2.68228352e-04], dtype=float32), 'class_ids': array([1]), 'classes': array([b'1'], dtype=object)}, {'logits': array([-10.0059433 , -0.94183457, 6.65795517], dtype=float32), 'probabilities': array([ 5.79086610e-08, 5.00306254e-04, 9.99499679e-01], dtype=float32), 'class_ids': array([2]), 'classes': array([b'2'], dtype=object)}, {'logits': array([-10.03779984, -0.58803403, 6.58065367], dtype=float32), 'probabilities': array([ 6.05846608e-08, 7.69739854e-04, 9.99230146e-01], dtype=float32), 'class_ids': array([2]), 'classes': array([b'2'], dtype=object)}, {'logits': array([ 14.65873909, 2.51680422, -14.8486042 ], dtype=float32), 'probabilities': array([ 9.99994636e-01, 5.33116554e-06, 1.53151526e-13], dtype=float32), 'class_ids': array([0]), 'classes': array([b'0'], dtype=object)}, {'logits': array([-8.05366135, -0.7239989 , 5.43754053], dtype=float32), 'probabilities': array([ 1.38016230e-06, 2.10456271e-03, 9.97894108e-01], dtype=float32), 'class_ids': array([2]), 'classes': array([b'2'], dtype=object)}, {'logits': array([-4.74107504, 4.26416063, 0.01158825], dtype=float32), 'probabilities': array([ 1.21028548e-04, 9.85852599e-01, 1.40263028e-02], dtype=float32), 'class_ids': array([1]), 'classes': array([b'1'], dtype=object)}, {'logits': array([-3.1617856 , 5.94625521, -2.06394577], dtype=float32), 'probabilities': array([ 1.10722489e-04, 9.99557316e-01, 3.31911142e-04], dtype=float32), 'class_ids': array([1]), 'classes': array([b'1'], dtype=object)}, {'logits': array([ 16.06151962, 2.79136181, -16.13220215], dtype=float32), 'probabilities': array([ 9.99998331e-01, 1.72521402e-06, 1.04338255e-14], dtype=float32), 'class_ids': array([0]), 'classes': array([b'0'], dtype=object)}, {'logits': array([-0.1547718 , 6.96881533, -4.85684061], dtype=float32), 'probabilities': array([ 8.05216085e-04, 9.99187529e-01, 7.30852798e-06], dtype=float32), 'class_ids': array([1]), 'classes': array([b'1'], dtype=object)}, {'logits': array([ 12.97141838, 4.03725767, -14.2029705 ], dtype=float32), 'probabilities': array([ 9.99868155e-01, 1.31791152e-04, 1.57854014e-12], dtype=float32), 'class_ids': array([0]), 'classes': array([b'0'], dtype=object)}, {'logits': array([ 15.51482964, 2.89622927, -15.66319656], dtype=float32), 'probabilities': array([ 9.99996662e-01, 3.30986154e-06, 2.88107042e-14], dtype=float32), 'class_ids': array([0]), 'classes': array([b'0'], dtype=object)}, {'logits': array([-8.73975182, -1.18648708, 5.97232819], dtype=float32), 'probabilities': array([ 4.07649509e-07, 7.77370529e-04, 9.99222159e-01], dtype=float32), 'class_ids': array([2]), 'classes': array([b'2'], dtype=object)}, {'logits': array([ 15.64372635, 2.90897799, -15.6467886 ], dtype=float32), 'probabilities': array([ 9.99997020e-01, 2.94691472e-06, 2.57454428e-14], dtype=float32), 'class_ids': array([0]), 'classes': array([b'0'], dtype=object)}, {'logits': array([-4.81624699, 3.6293087 , 0.63097322], dtype=float32), 'probabilities': array([ 2.04605545e-04, 9.52304006e-01, 4.74914126e-02], dtype=float32), 'class_ids': array([1]), 'classes': array([b'1'], dtype=object)}, {'logits': array([-8.80371475, -0.39039207, 5.63731527], dtype=float32), 'probabilities': array([ 5.33696152e-07, 2.40521529e-03, 9.97594178e-01], dtype=float32), 'class_ids': array([2]), 'classes': array([b'2'], dtype=object)}, {'logits': array([-6.91917133, 2.50265408, 2.4683063 ], dtype=float32), 'probabilities': array([ 4.11623223e-05, 5.08565187e-01, 4.91393685e-01], dtype=float32), 'class_ids': array([1]), 'classes': array([b'1'], dtype=object)}, {'logits': array([-2.83097792, 6.94565678, -2.89881945], dtype=float32), 'probabilities': array([ 5.67562929e-05, 9.99890208e-01, 5.30335128e-05], dtype=float32), 'class_ids': array([1]), 'classes': array([b'1'], dtype=object)}, {'logits': array([-4.42013788, 4.92947769, -0.53595734], dtype=float32), 'probabilities': array([ 8.66248956e-05, 9.95701015e-01, 4.21231333e-03], dtype=float32), 'class_ids': array([1]), 'classes': array([b'1'], dtype=object)}, {'logits': array([ 17.43722343, 3.1321764 , -17.74347305], dtype=float32), 'probabilities': array([ 9.99999404e-01, 6.12910128e-07, 5.26281687e-16], dtype=float32), 'class_ids': array([0]), 'classes': array([b'0'], dtype=object)}, {'logits': array([-4.5709672 , 5.86139631, -1.07322729], dtype=float32), 'probabilities': array([ 2.94338297e-05, 9.98998106e-01, 9.72513983e-04], dtype=float32), 'class_ids': array([1]), 'classes': array([b'1'], dtype=object)}, {'logits': array([-9.68447876, -1.25304651, 6.60897779], dtype=float32), 'probabilities': array([ 8.38830658e-08, 3.84945248e-04, 9.99614954e-01], dtype=float32), 'class_ids': array([2]), 'classes': array([b'2'], dtype=object)}, {'logits': array([-3.40590096, 6.96505642, -2.54329181], dtype=float32), 'probabilities': array([ 3.13259734e-05, 9.99894381e-01, 7.42216871e-05], dtype=float32), 'class_ids': array([1]), 'classes': array([b'1'], dtype=object)}]
Test Samples, Class Predictions: [1, 2, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 2, 1, 1, 0, 1, 0, 0, 2, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1]
Test Samples, Truth Labels: [<tf.Tensor 'DecodeCSV_1:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_2:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_3:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_4:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_5:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_6:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_7:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_8:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_9:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_10:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_11:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_12:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_13:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_14:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_15:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_16:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_17:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_18:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_19:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_20:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_21:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_22:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_23:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_24:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_25:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_26:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_27:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_28:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_29:4' shape=() dtype=int32>, <tf.Tensor 'DecodeCSV_30:4' shape=() dtype=int32>]
Traceback (most recent call last):
File "/Users/timmolter/workspaces/workspace_tf/HelloTensorFlow/src/iris_DNN_Classifier.py", line 147, in <module>
for i in range(len(confusion_matrix)):
TypeError: object of type 'Tensor' has no len()
最佳答案
这是我想出的解决方案:
码
accuracy_score = classifier.evaluate(input_fn=lambda: my_input_fn(FILE_TEST, False, 1))["accuracy"]
print("\nTest Accuracy: {0:f}\n".format(accuracy_score))
predictions = list(classifier.predict(input_fn=lambda: my_input_fn(FILE_TEST, False, 1)))
predicted_classes = [p["class_ids"][0] for p in predictions]
print(
"Test Samples, Class Predictions: {}\n"
.format(predicted_classes))
# truth labels
with open(FILE_TEST,'r') as f:
lines = f.readlines()[1:]
reader = csv.reader(lines, delimiter=',')
truth_labels = [int(row[-1]) for row in reader]
print(
"Test Samples, Class Truth Labels: {}\n"
.format(truth_labels))
with tf.Session() as sess:
confusion_matrix = tf.confusion_matrix(labels=truth_labels, predictions=predicted_classes, num_classes=3)
confusion_matrix_to_Print = sess.run(confusion_matrix)
print(confusion_matrix_to_Print)
输出量
Test Accuracy: 0.966667
Test Samples, Class Predictions: [1, 2, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 2, 1, 1, 0, 1, 0, 0, 2, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1]
Test Samples, Class Truth Labels: [1, 2, 0, 1, 1, 1, 0, 2, 1, 2, 2, 0, 2, 1, 1, 0, 1, 0, 0, 2, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1]
[[ 8 0 0]
[ 0 14 0]
[ 0 1 7]]
关于python - 如何在琐碎的Tensorflow示例中打印混淆矩阵?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/48150876/