因此,我对机器学习和Python还是一个新手,但是设法对我的数据进行分类,并使用以下代码通过各种分类器打印混淆矩阵:

def classify_data(df, feature_cols, file):
nbr_folds = 5
attributes = df.loc[:, feature_cols]  # Also known as x
class_label = df['task']  # Class label, also known as y.
file.write("\nFeatures used: ")
for feature in feature_cols:
    file.write(feature + ",")
print("Features used", feature_cols)

print("MLP")
file.write("MLP")
mlp = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1)
class_label_predicted = cross_val_predict(mlp, attributes, class_label, cv=nbr_folds)
conf_mat = confusion_matrix(class_label, class_label_predicted)
print(conf_mat)
accuracy = accuracy_score(class_label, class_label_predicted)
print("\nRows classified: " + str(len(class_label_predicted)))
print("\nAccuracy: {0:.3f}%\n".format(accuracy * 100))
file.write("\nClassifier settings:" + str(mlp) + "\n")
file.write("\nRows classified: " + str(len(class_label_predicted)))
file.write("\nAccuracy: {0:.3f}%\n".format(accuracy * 100))
file.writelines('\t'.join(str(j) for j in i) + '\n' for i in conf_mat)

print("RandomForest")
file.write("\nRandomForest")
#sv = svm.SVC(kernel="linear")
clf = RandomForestClassifier(max_depth=2, random_state=0)
class_label_predicted = cross_val_predict(clf, attributes, class_label, cv=nbr_folds)
conf_mat = confusion_matrix(class_label, class_label_predicted)
print(conf_mat)
accuracy = accuracy_score(class_label, class_label_predicted)
print("Rows classified: " + str(len(class_label_predicted)))
print("Accuracy: {0:.3f}%\n".format(accuracy * 100))
file.write("\nClassifier settings:" + str(clf) + "\n")
file.write("\nRows classified: " + str(len(class_label_predicted)))
file.write("\nAccuracy: {0:.3f}%\n".format(accuracy * 100))
file.writelines('\t'.join(str(j) for j in i) + '\n' for i in conf_mat)


但是,我开始怀疑我在这里是否做错了什么,因为混淆矩阵几乎总是一样,将所有内容都放在了我的第五个功能上。当我在Weka应用程序中使用相同的属性运行完全相同的数据集时,得到的结果是不同的。下面是一个示例:

sci kit learn:
MLP
Rows classified: 6881
Accuracy: 25.970%
0   0   0   0   412 12  0   0   25  1   0   0   0
0   0   0   0   540 50  0   0   8   0   0   0   0
0   0   0   0   111 3   0   0   6   2   0   0   0
0   0   0   0   139 19  0   0   4   2   0   0   0
0   0   0   0   1630    54  0   0   106 18  0   0   0
0   0   0   0   554 63  0   0   22  0   0   0   0
0   0   0   0   246 8   0   0   33  10  0   0   0
0   0   0   0   324 39  0   0   8   0   0   0   0
0   0   0   0   605 60  0   0   90  5   0   0   0
0   0   0   0   519 31  0   0   72  4   0   0   0
0   0   0   0   455 19  0   0   10  1   0   0   0
0   0   0   0   260 11  0   0   21  1   0   0   0
0   0   0   0   236 8   0   0   21  3   0   0   0

RandomForest:
Rows classified: 6881
Accuracy: 26.174%
0   0   0   0   440 0   0   0   10  0   0   0   0
0   0   0   0   597 0   0   0   0   1   0   0   0
0   0   0   0   119 0   0   0   3   0   0   0   0
0   0   0   0   164 0   0   0   0   0   0   0   0
0   0   0   0   1774    0   0   0   34  0   0   0   0
0   0   0   0   629 0   0   0   10  0   0   0   0
0   0   0   0   268 0   0   0   29  0   0   0   0
0   0   0   0   371 0   0   0   0   0   0   0   0
0   0   0   0   733 0   0   0   27  0   0   0   0
0   0   0   0   605 0   0   0   21  0   0   0   0
0   0   0   0   484 0   0   0   1   0   0   0   0
0   0   0   0   286 0   0   0   7   0   0   0   0
0   0   0   0   263 0   0   0   5   0   0   0   0

Weka
MLP
    a    b    c    d    e    f    g    h    i    j    k    l    m   <-- classified as
    5  504   50    1    0    0   10   28    0    0    0    0    0 |    a = t1
    2 1511   56    1    4    1   83  135    0    2   12    0    1 |    b = t12
    4  467   88    0    1    3   30   45    0    0    0    1    0 |    c = t2
    1  227   15    2    2    0   36   13    0    1    0    0    0 |    d = t3
    4  369   18    2    1    0   25   31    0    0    0    0    0 |    e = t0
    3  306   43    0    1    2   10    6    0    0    0    0    0 |    f = t4
    5  463   36    2    4    0  178   69    0    0    2    0    1 |    g = t5
    3  371   23    1    0    0   49  176    0    0    2    1    0 |    h = t6
    4  398   14    1    1    0   28   33    0    0    5    1    0 |    i = t7
    1  252   13    0    0    0   16    8    0    1    2    0    0 |    j = t8
    1  213    9    0    0    0   20   24    0    1    0    0    0 |    k = t9
    1   96    3    0    0    0    4   16    0    0    2    0    0 |    l = t10
    1  133    7    0    0    0    7   15    0    0    1    0    0 |    m = t11


我还想知道是否可以像Weka一样用类标签打印混淆矩阵?在这里,看来b列与sci kit Learn中的第五列相当,但是很难说出它代表的是哪一列。

最佳答案

看来您的数据集严重不平衡-第五类非常占主导地位,并且您的模型大部分时间只是在学习预测该标签。

怎么处理呢?阅读例如this

关于python - 科学工具包学习混淆矩阵总是看起来几乎一样,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/50319858/

10-12 21:12