我正在解决类似于pulp example的混合问题

我有这种约束来确保生产的数量是所需的数量

prob += lpSum([KG[i] * deposit_vars[i] for i in deposit]) == 64, "KGRequirement"


但是我还需要为最小值(不等于零)添加另一个约束,这是因为例如,我服用0.002KG一种成分并不方便,我必须服用0或至少2kg,因此有效的情况是例如0、2、2.3、6、3.23。

我试图通过这种方式:

for i in deposit:
    prob += (KG[i] * deposit_vars[i] == 0) or (TM[i] * deposit_vars[i] >= 30)


但这是行不通的,只会使问题变得不可行。

编辑

这是我当前的代码:

import pulp
from pulp import *
import pandas as pd

food = ["f1","f2","f3","f4"]
KG = [10,20,50,80]
Protein =       [18,12,16,18]
Grass = [13,14,13,16]
price_per_kg =  [15,11,10,22]

##            protein,carbohydrates,kg

df = pd.DataFrame({"tkid":food,"KG":KG,"Protein":Protein,"Grass":Grass,"value":price_per_kg})


deposit =  df["tkid"].values.tolist()

factor_volumen = 1



costs =  dict((k,v) for k,v in zip(df["tkid"],df["value"]))
Protein =  dict((k,v) for k,v in zip(df["tkid"],df["Protein"]))
Grass =  dict((k,v) for k,v in zip(df["tkid"],df["Grass"]))
KG =  dict((k,v) for k,v in zip(df["tkid"],df["KG"]))

prob = LpProblem("The Whiskas Problem", LpMinimize)
deposit_vars = LpVariable.dicts("Ingr",deposit,0)
prob += lpSum([costs[i]*deposit_vars[i] for i in deposit]), "Total Cost of Ingredients per can"

#prob += lpSum([deposit_vars[i] for i in deposit]) == 1.0, "PercentagesSum"
prob += lpSum([Protein[i] *KG[i] * deposit_vars[i] for i in deposit]) >= 17.2*14, "ProteinRequirement"
prob += lpSum([Grass[i] *KG[i] * deposit_vars[i] for i in deposit]) >= 12.8*14, "FatRequirement"
prob += lpSum([KG[i] * deposit_vars[i] for i in deposit]) == 14, "KGRequirement"
prob += lpSum([KG[i] * deposit_vars[i] for i in deposit]) <= 80, "KGRequirement1"

prob.writeLP("WhiskasModel.lp")
prob.solve()
# The status of the solution is printed to the screen
print ("Status:", LpStatus[prob.status])

# Each of the variables is printed with it's resolved optimum value
for v in prob.variables():
    print (v.name, "=", v.varValue)

# The optimised objective function value is printed to the screen
print ("Total Cost of Ingredients per can = ", value(prob.objective))


我要添加的新禁忌素在这一部分:

prob += lpSum([KG[i] * deposit_vars[i] for i in deposit]) <= 80, "KGRequirement1"


我希望乘积KG [i] * deposit_vars [i]为0或介于a和b之间

最佳答案

在传统的线性规划公式中,所有变量,目标函数和约束都必须是连续的。您要问的是如何使此变量成为离散变量,即它只能接受值a,b,...,而不能接受两者之间的任何值。当您具有连续变量和离散变量的组合时,这称为混合整数问题(MIP)。 See PuLP documentation that reflects this explanation.我建议您仔细阅读“整数”中提到的混合问题;他们分散在页面上。根据PuLP的文档,它可以通过调用外部MIP求解器来解决MIP问题,其中一些已经包括在内。

如果没有最低限度的工作示例,那么解释如何实现这一点将有些棘手。一种方法是将变量指定为整数,并将其作为dict的值。保留默认的求解器COIN-OR's CBC solver求解器,然后将求解MIP。同时,这里有一些可供您继续使用的资源:


https://www.toptal.com/algorithms/mixed-integer-programming#example-problem-scheduling


注意它如何使用CBC求解器(这是默认的求解器)来解决此问题

http://yetanothermathprogrammingconsultant.blogspot.com/2018/08/scheduling-easy-mip.html


关于如何设置整数变量并调用CBC求解器的更明确的示例

07-26 00:41