我有一个形成曲线的样本向量。假设其中有1000点。如果我想将其拉伸(stretch)到1500点,给出结果的最简单算法是什么?我正在寻找的只是几行C/C++。

我总是想增加向量的大小,新向量的大小可以是当前向量的1.1倍至50倍。

谢谢!

最佳答案

这是用于线性和二次插值的C++。interp1( 5.3, a, n )是a [5] + .3 *(a [6]-a [5]),从a [5]到a [6]的方式是0.3;interp1array( a, 1000, b, 1500 )会将a扩展为binterp2( 5.3, a, n )通过3个最近的点a [4] a [5] a [6]绘制抛物线:比interp1平滑,但仍然很快。
(样条线使用4个最近点,但更平滑;如果您阅读python,请参见
basic-spline-interpolation-in-a-few-lines-of-numpy

// linear, quadratic interpolation in arrays
// from interpol.py denis 2010-07-23 July

#include <stdio.h>
#include <stdlib.h>

    // linear interpolate x in an array
// inline
float interp1( float x, float a[], int n )
{
    if( x <= 0 )  return a[0];
    if( x >= n - 1 )  return a[n-1];
    int j = int(x);
    return a[j] + (x - j) * (a[j+1] - a[j]);
}

    // linear interpolate array a[] -> array b[]
void inter1parray( float a[], int n, float b[], int m )
{
    float step = float( n - 1 ) / (m - 1);
    for( int j = 0; j < m; j ++ ){
        b[j] = interp1( j*step, a, n );
    }
}

//..............................................................................
    // parabola through 3 points, -1 < x < 1
float parabola( float x, float f_1, float f0, float f1 )
{
    if( x <= -1 )  return f_1;
    if( x >= 1 )  return f1;
    float l = f0 - x * (f_1 - f0);
    float r = f0 + x * (f1 - f0);
    return (l + r + x * (r - l)) / 2;
}

    // quadratic interpolate x in an array
float interp2( float x, float a[], int n )
{
    if( x <= .5  ||  x >= n - 1.5 )
        return interp1( x, a, n );
    int j = int( x + .5 );
    float t = 2 * (x - j);  // -1 .. 1
    return parabola( t, (a[j-1] + a[j]) / 2, a[j], (a[j] + a[j+1]) / 2 );
}

    // quadratic interpolate array a[] -> array b[]
void interp2array( float a[], int n, float b[], int m )
{
    float step = float( n - 1 ) / (m - 1);
    for( int j = 0; j < m; j ++ ){
        b[j] = interp2( j*step, a, n );
    }
}

int main( int argc, char* argv[] )
{
        // a.out [n m] --
    int n = 10, m = 100;
    int *ns[] = { &n, &m, 0 },
        **np = ns;
    char* arg;
    for( argv ++;  (arg = *argv) && *np;  argv ++, np ++ )
        **np = atoi( arg );
    printf( "n: %d  m: %d\n", n, m );

    float a[n], b[m];
    for( int j = 0; j < n; j ++ ){
        a[j] = j * j;
    }
    interp2array( a, n, b, m );  // a[] -> b[]

    for( int j = 0; j < m; j ++ ){
        printf( "%.1f ", b[j] );
    }
    printf( "\n" );
}

关于algorithm - 延伸数组,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/3304513/

10-12 18:47