我试图运行plm来查看正面,负面和中性类别对股票价格的影响。

DATE <- c("1","2","3","4","5","6","7","1","2","3","4","5","6","7")
COMP <- c("A", "A", "A", "A", "A", "A", "A", "B", "B", "B", "B", "B", "B", "B")
RET <- c(-2.0,1.1,3,1.4,-0.2, 0.6, 0.1, -0.21, -1.2, 0.9, 0.3, -0.1,0.3,-0.12)
CLASS <- c("positive", "negative", "neutral", "positive", "positive", "negative", "neutral", "positive", "negative", "negative", "positive", "neutral", "neutral", "neutral")
df <- data.frame(DATE, COMP, RET, CLASS, stringsAsFactors=F)

df

#    DATE COMP   RET    CLASS
# 1     1    A -2.00 positive
# 2     2    A  1.10 negative
# 3     3    A  3.00  neutral
# 4     4    A  1.40 positive
# 5     5    A -0.20 positive
# 6     6    A  0.60 negative
# 7     7    A  0.10  neutral
# 8     1    B -0.21 positive
# 9     2    B -1.20 negative
# 10    3    B  0.90 negative
# 11    4    B  0.30 positive
# 12    5    B -0.10  neutral
# 13    6    B  0.30  neutral
# 14    7    B -0.12  neutral


如果我运行模型,则输出仅显示两个估计(中性和肯定)。我如何看待课堂负面评价?我认为这与假人有关。但是,对于否定类,至少不应该有一行“拦截”吗?

mymodel <- plm(RET ~ CLASS, data=df,
              index = c("DATE", "COMP"),
              model="within",
              effect="time")

summary(mymodel)

# Oneway (time) effect Within Model

# Call:
# plm(formula = RET ~ CLASS, data = df, effect = "time", model = "within",
#     index = c("DATE", "COMP"))

# Balanced Panel: n=7, T=2, N=14

# Residuals :
#    Min. 1st Qu.  Median 3rd Qu.    Max.
# -2.1500 -0.4620 -0.0791  0.7540  1.9300

# Coefficients :
#               Estimate Std. Error t-value Pr(>|t|)
# CLASSneutral   0.35818    0.81581  0.4390    0.670
# CLASSpositive -0.56418    0.81581 -0.6916    0.505

# Total Sum of Squares:    16.79
# Residual Sum of Squares: 14.694
# R-Squared      :  0.12486
#       Adj. R-Squared :  0.089183
# F-statistic: 0.713347 on 2 and 10 DF, p-value: 0.5133


谢谢!

最佳答案

与大多数具有分类协变量的模型一样,第一级用作参考级。在这种情况下,“负”类别用作参考类别,因为默认情况下R会按字母顺序对因子的级别进行排序。当拥有分类数据时,就无法真正弄清特定于人的均值和参考类别的均值。它们合并为拦截项。那么CLASSneutral的系数不是neutral类的影响,而是neutralnegative的影响之间的差异。 CLASSpositive相同-positivenegative的效果不同。由于该模型默认情况下使用单独的效果,因此每个人都有自己的截距,我假设这就是为什么他们没有在摘要上打印它。

这不是plm唯一的。标准lm也会发生相同的情况。

10-07 15:24