我必须编写蛮力算法来用预定方法求解数独。
对于解决方法,我有点犹豫。作业说,我们必须至少使用给定的方法,即isPermutationisPermutationRowisPermutationColisPermutationBlockisPermutationMatrixisValidsolve

考虑到它必须是递归的,我真的不知道何时在solve方法中返回值。

我真的很感谢您的帮助:)

package gdp.aufgabe22;

public class Sudoku {

public static void main(String[] args) {
    int[][] d = { {0,0,3,0,2,0,6,0,0},
                  {9,0,0,3,0,5,0,0,1},
                  {0,0,1,8,0,6,4,0,0},
                  {0,0,8,1,0,2,9,0,0},
                  {7,0,0,0,0,0,0,0,8},
                  {0,0,6,7,0,8,2,0,0},
                  {0,0,2,6,0,9,5,0,0},
                  {8,0,0,2,0,3,0,0,9},
                  {0,0,5,0,1,0,3,0,0}
    };
    int[][] s = solve(d);
    for (int i = 0; i < 9; i++) {
        for (int j = 0; j < 9; j++) {
            System.out.print(s[i][j] + " ");
        }
        System.out.print("\n");
    }
    System.out.println();
}

public static boolean isPermutation(int[] a) {
    int[][] key = new int[2][a.length];
    key[0] = a;
    for (int i = 0; i < key.length; i++) {
        key[1][i] = 0;
    }
    for (int i = 0; i < key.length; i++) {
        if (a[i]>0) {
            key[1][a[i]-1]++;
        }
    }
    boolean keycheck = false;
    for (int i = 0; i < a.length; i++) {
        if(key[1][i]>1) {
            keycheck = true;
        }
    }
    if (keycheck == true) {
        return false;
    }
    else {
        return true;
    }
}

public static boolean isPermutationRow(int[][] a, int row) {
        int[] key = new int[a[row].length];
        key = a[row];
        return isPermutation(key);
}

public static boolean isPermutationCol(int[][] a, int col) {
    int[] key = new int[a.length];
    for (int i = 0; i < key.length; i++) {
        key[i] = a[i][col];
    }
    return isPermutation(key);
}

public static boolean isPermutationMatrix(int[][] a) {
    for (int i = 0; i < a.length; i++) {
        if (!isPermutationRow(a, i)) {
            return false;
        }
    }
    for (int i = 0; i < a.length; i++) {
        if (!isPermutationCol(a, i)) {
            return false;
        }
    }
    for (int i = 0; i < 9; i++) {
        for (int j = 0; j < 9; j++) {
            switch (i) {
            case 0: switch(j) {
                case 0: if(!isPermutationBlock(a,0,2,0,2)) {
                    return false;
                }
                case 3: if(!isPermutationBlock(a,0,2,3,5)) {
                    return false;
                }
                case 6: if(!isPermutationBlock(a,0,2,6,8)) {
                    return false;
                }
                default: break;
            }
            case 3: switch(j) {
                case 0: if(!isPermutationBlock(a,3,5,0,2)) {
                    return false;
                }
                case 3: if(!isPermutationBlock(a,3,5,3,5)) {
                    return false;
                }
                case 6: if(!isPermutationBlock(a,3,5,6,8)) {
                    return false;
                }
                default: break;
            }
            case 6: switch(j) {
                case 0: if(!isPermutationBlock(a,6,8,0,2)) {
                    return false;
                }
                case 3: if(!isPermutationBlock(a,6,8,3,5)) {
                    return false;
                }
                case 6: if(!isPermutationBlock(a,6,8,6,8)) {
                    return false;
                }
                default: break;
            }
            default: break;
        }
        }
    }
    return true;
}

public static boolean isPermutationBlock(int[][] a, int minRow, int maxRow, int minCol, int maxCol) {
    int[][] key = new int[2][(maxRow-minRow+1)+(maxCol-minCol+1)];
    int[][] countfeld = new int[2][9];
    for (int i = 0; i < 9; i++) {
        countfeld[0][i] = i+1;
    }
    int keycount = 0;
    for (int i = minRow; i<maxRow; i++) {
        for (int j = minCol; j<maxCol; j++) {
            key[0][keycount] = a[i][j];
            keycount++;
        }
    }
    for (int i = 0; i < countfeld[0].length; i++) {
        countfeld[1][i] = 0;
    }
    for (int i = 0; i < key[0].length; i++) {
        if (key[0][i]>0) {
            countfeld[1][key[0][i]-1]++;
        }
    }
    boolean keycheck = false;
    for (int i = 0; i < key[0].length; i++) {
        if(countfeld[1][i]>1) {
            keycheck = true;
        }
    }
    if (keycheck == true) {
        return false;
    }
    else {
        return true;
    }
}

public static boolean isValid(int[][] a) {
    if (a.length != 9 || a[0].length != 9) {
        return false;
    }
    return (isPermutationMatrix(a));
}

public static int[][] solve(int[][] a) {
    int[] freeslot = findfreeslot(a);
    int f1 = freeslot[0];
    int f2 = freeslot[1];
    if (f1 == -1) {
        return a;
    }
    teilsolve(f1, f2, a);
    return a;
}

public static void teilsolve(int f1, int f2, int[][] a) {
    int[][] temp = new int[a.length][a[0].length];
    for (int y = 0; y < a.length; y++) {
        for (int z = 0; z < a[0].length; z++) {
            temp[y][z] = a[y][z];
        }
    }
    for (int i = 1; i < 10; i++) {
        a[f1][f2] = i;
        boolean valide = isValid(a);
        if (valide) {
            a = solve(a);
            break;
        }
    }
}

public static int[] findfreeslot(int[][]a) {
    int[] key = {-1,-1};
    for (int i = 0; i < 9; i++) {
        for (int j = 0; j < 9; j++) {
            if (a[i][j] == 0) {
                key[0] = i;
                key[1] = j;
                return key;
            }
        }
    }
    return key;
}
}

最佳答案

您的代码中有很多问题。

首先,方法isPermutation是错误的:循环直到key.length为2,此时您最多应循环9个a.length!该方法应为:

public static boolean isPermutation(int[] a) {
    int[][] key = new int[2][a.length];
    key[0] = a;
    for (int i = 0; i < a.length; i++) {
        key[1][i] = 0;
    }
    for (int i = 0; i < a.length; i++) {
        if (a[i] > 0) {
            key[1][a[i] - 1]++;
        }
    }
    boolean keycheck = false;
    for (int i = 0; i < a.length; i++) {
        if (key[1][i] > 1) {
            keycheck = true;
            break;
        }
    }
    if (keycheck == true) {
        return false;
    } else {
        return true;
    }
}


正如Patrick J Abare II所指出的,结尾实际上应该是return ! keycheck;

接下来,您尝试使用蛮力,但不要回溯。方法对solveteilsolve应该在任何级别处理不可接受的值,并且应为:

public static int[][] solve(int[][] a) {
    int[] freeslot = findfreeslot(a);
    int f1 = freeslot[0];
    int f2 = freeslot[1];
    if (f1 == -1) {
        return a;
    }
    a = teilsolve(f1, f2, a);
    return a;
}

public static int [][] teilsolve(int f1, int f2, int[][] a) {
    int [][] temp2;
    int[][] temp = new int[a.length][a[0].length];
    for (int y = 0; y < a.length; y++) {
        for (int z = 0; z < a[0].length; z++) {
            temp[y][z] = a[y][z];
        }
    }
    for (int i = 1; i < 10; i++) {
        temp[f1][f2] = i;
        boolean valide = isValid(temp);
        if (valide) {
            temp2 = solve(temp);
            if (temp2 != null) {return temp2;}
        }
    }
    return null;
}


这样,程序将返回:

4 5 3 9 2 1 6 8 7
9 2 7 3 6 5 8 4 1
2 3 1 8 9 6 4 7 5
5 4 8 1 7 2 9 3 6
7 6 9 5 3 4 1 2 8
1 9 6 7 4 8 2 5 3
3 7 2 6 8 9 5 1 4
8 1 4 2 5 3 7 6 9
6 8 5 4 1 7 3 9 2

关于java - 数独蛮力算法,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/26909236/

10-09 05:53