我在Java类中遇到了一个项目,但遇到了麻烦。
该项目基本上是在屏幕上标记坐标,从中创建一个(复杂的)多项式,然后使用牛顿方法使用随机猜测来求解多项式,并在屏幕上绘制猜测的路径。
我没有任何图纸,标记等问题。
但是由于某种原因,我的牛顿方法算法随机遗漏了根。有时它没有命中任何一个,有时却错过了一两个。我已经花了几个小时来更改内容,但是我真的无法提出解决方案。
当根丢失时,通常我在数组中得到的值要么收敛到无穷大要么负无穷大(非常高的数字)
任何帮助将非常感激。
> // Polynomial evaluation method.
public Complex evalPoly(Complex complexArray[], Complex guess) {
Complex result = new Complex(0, 0);
for (int i = 0; i < complexArray.length; i++) {
result = result.gaussMult(guess).addComplex(complexArray[complexArray.length - i - 1]);
}
return result;
}
> // Polynomial differentation method.
public Complex[] diff(Complex[] comp) {
Complex[] result = new Complex[comp.length - 1];
for (int j = 0; j < result.length; j++) {
result[j] = new Complex(0, 0);
}
for (int i = 0; i < result.length - 1; i++) {
result[i].real = comp[i + 1].real * (i + 1);
result[i].imaginary = comp[i + 1].imaginary * (i + 1);
}
return result;
}
> // Method which eliminates some of the things that I don't want to go into the array
public boolean rootCheck2(Complex[] comps, Complex comp) {
double accLim = 0.01;
if (comp.real == Double.NaN)
return false;
if (comp.real == Double.NEGATIVE_INFINITY || comp.real == Double.POSITIVE_INFINITY)
return false;
if (comp.imaginary == Double.NaN)
return false;
if (comp.imaginary == Double.NEGATIVE_INFINITY || comp.imaginary == Double.POSITIVE_INFINITY)
return false;
for (int i = 0; i < comps.length; i++) {
if (Math.abs(comp.real - comps[i].real) < accLim && Math.abs(comp.imaginary - comps[i].imaginary) < accLim)
return false;
}
return true;
}
> // Method which finds (or attempts) to find all of the roots
public Complex[] addUnique2(Complex[] poly, Bitmap bitmapx, Paint paint, Canvas canvasx) {
Complex[] rootsC = new Complex[poly.length - 1];
int iterCount = 0;
int iteLim = 20000;
for (int i = 0; i < rootsC.length; i++) {
rootsC[i] = new Complex(0, 0);
}
while (iterCount < iteLim && MainActivity.a < rootsC.length) {
double guess = -492 + 984 * rand.nextDouble();
double guess2 = -718 + 1436 * rand.nextDouble();
if (rootCheck2(rootsC, findRoot2(poly, new Complex(guess, guess2), bitmapx, paint, canvasx))) {
rootsC[MainActivity.a] = findRoot2(poly, new Complex(guess, guess2), bitmapx, paint, canvasx);
MainActivity.a = MainActivity.a + 1;
}
iterCount = iterCount + 1;
}
return rootsC;
}
> // Method which finds a single root of the complex polynomial.
public Complex findRoot2(Complex[] comp, Complex guess, Bitmap bitmapx, Paint paint, Canvas canvasx) {
int iterCount = 0;
double accLim = 0.001;
int itLim = 20000;
Complex[] diffedComplex = diff(comp);
while (Math.abs(evalPoly(comp, guess).real) >= accLim && Math.abs(evalPoly(comp, guess).imaginary) >= accLim) {
if (iterCount >= itLim) {
return new Complex(Double.NaN, Double.NaN);
}
if (evalPoly(diffedComplex, guess).real == 0 || evalPoly(diffedComplex, guess).imaginary == 0) {
return new Complex(Double.NaN, Double.NaN);
}
iterCount = iterCount + 1;
guess.real = guess.subtractComplex(evalPoly(comp, guess).divideComplex(evalPoly(diffedComplex, guess))).real;
guess.imaginary = guess.subtractComplex(evalPoly(comp, guess).divideComplex(evalPoly(diffedComplex, guess))).imaginary;
drawCircles((float) guess.real, (float) guess.imaginary, paint, canvasx, bitmapx);
}
return guess;
}
> // Drawing method
void drawCircles(float x, float y, Paint paint, Canvas canvasx, Bitmap bitmapx) {
canvasx.drawCircle(x + 492, shiftBackY(y), 5, paint);
coordPlane.setAdjustViewBounds(false);
coordPlane.setImageBitmap(bitmapx);
}
}
最佳答案
错误1
线
guess.real = guess.subtractComplex(evalPoly(comp, guess).divideComplex(evalPoly(diffedComplex, guess))).real;
guess.imaginary = guess.subtractComplex(evalPoly(comp, guess).divideComplex(evalPoly(diffedComplex, guess))).imaginary;
首先引入不必要的复杂性,其次引入导致其偏离牛顿方法的错误。第二行中使用的
guess
与第一行中使用的guess
不同,因为实际部分已更改。为什么不像评估程序那样使用复杂的分配
guess = guess.subtractComplex(evalPoly(comp, guess).divideComplex(evalPoly(diffedComplex, guess)));
错误2(更新)
在微分多项式的计算中,您错过了
for (int i = 0; i < result.length - 1; i++) {
result[i].real = comp[i + 1].real * (i + 1);
result[i].imaginary = comp[i + 1].imaginary * (i + 1);
它应该是
i < result.length
或i < comp.length - 1
。当然,使用错误的导数将导致迭代中不可预测的结果。根边界和初始值
您可以为每个多项式分配一个外部根边界,例如
R = 1+max(abs(c[0:N-1]))/abs(c[N])
在此圆上或附近使用随机或等距的
3*N
点,应会增加到达每个根的概率。但是,找到所有根的通常方法是使用多项式放气,即,将与已经找到的根近似相对应的线性因子分开。然后,使用完整多项式的几个附加的牛顿步骤将恢复最大精度。
牛顿分形
每个根都有一个吸引盆地或域,域之间有分形边界。在重建与
我计算出牛顿分形,表明对根的两个的吸引和对另两个根的无知是其背后数学的特征,而不是实施牛顿方法的错误。
相同颜色的不同阴影属于同一根的域,其中亮度对应于到达根周围白色区域的步骤数。