Miller Robbin素数判定

一、实现原理

我们以前都是怎么判断素数的呢:

inline int is_prime(int n){
    if(n==1) return 0;
    for(int i=2;i<=sqrt(n);i++){
        if(n%i==0) return 0;
    }
    return 1;
} 

现在,我们希望更快的判断一个数是否为素数。
我们可以借助费马小定理来判断:
如果p是一个质数,而整数a不是p的倍数,则有
\[a^{p-1}\equiv 1\pmod p\]
Miller Robbin素数判定就是根据上述定理实现的,如果我们随机枚举一个\(a\),如果满足这个同余式,那么\(p\)是素数。
需要注意的是,我们这样判断素数的方法利用的是费马小定理的逆定理。不幸的是,费马小定理的逆定理并不是一个真命题。

我们把像341这样的数称作伪素数。实际上,伪素数有无穷多组。
这意味着一次判断不足以保证我们的程序正确。当然,解决这个问题也十分简单。
我们只需要重复操作大约30次,便能将正确率提升到我们期待的水平。
另外,我们使用快速幂来计算\(a^{p-1}\)

二、模板

模板题:AT807 素数、コンテスト、素数

#include<bits/stdc++.h>
#define int long long
using namespace std;
inline int qpow(int a,int b,int mod){//快速幂
    int res=1;
    while(b){
        if(b&1) res=(res%mod*a)%mod;
        b>>=1;
        a=(a%mod)*a%mod;
    }
    return res;
}
inline int miller_robbin(int num){//核心代码
    for(int i=1;i<=30;i++){
        int base=rand()%(num-1)+1;
        if(qpow(base,num-1,num)!=1) return 0;
    }
    return 1;
}
signed main(){
    int num;
    scanf("%d",&num);
    if(num==1){
        printf("NO");
        return 0;
    }
    miller_robbin(num)?printf("YES\n"):printf("NO\n");
    return 0;
}

附赠一道水题:(主要是练习素数判定)
AT1476 素数判定

#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll qpow(ll a,ll b,ll mod){
    ll res=1;
    while(b){
        if(b&1)res=(res%mod*a)%mod;
        a=(a%mod)*a%mod;
        b>>=1;
    }
    return res;
}
bool query_prime(ll x)
{
    if(x==2)return true;
    if(x==1)return false;
    for(int i=1;i<=30;i++){
        ll base=rand()%(x-1)+1;
        if(qpow(base,x-1,x)!=1)return false;
    }
    return true;
}
int main()
{
    srand(time(NULL));
    ll num;
    scanf("%lld",&num);
    if(query_prime(num)||(num%2!=0&&num%3!=0&&num%5!=0&&num!=1))printf("Prime\n");
    else printf("Not Prime\n");
    return 0;
}

三、小结

使用Miller Robbin素数判定,我们可以将复杂度降低至\(O(logn)\)级别(常数级可以被忽略)。这样比原来的方法会快很多。

02-13 23:45