我的mapreduce应用程序看起来像这样。我想对字符串中的3个值求和
public class StockCount {
public static class MapperClass
extends Mapper<Object, Text, Text, IntArrayWritable> {
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
String line[] = value.toString().split(",");
//mgrno,rdate,cusip,shares,sole,shared,no
// [0], [1], [2], [3], [4], [5],[6]
if (line.length > 5){
Text mgrno = new Text(line[0]);
IntWritable[] intArray = new IntWritable[3];
intArray[0] = new IntWritable(Integer.parseInt(line[4]));
intArray[1] = new IntWritable(Integer.parseInt(line[5]));
intArray[2] = new IntWritable(Integer.parseInt(line[6]));
int[] pass = new int[3];
pass[0] = Integer.parseInt(line[4]);
pass[1] = Integer.parseInt(line[5]);
pass[0] = Integer.parseInt(line[6]);
IntArrayWritable array = new IntArrayWritable(intArray);
context.write(mgrno, array);
}
}
}
public static class IntSumReducer
extends Reducer<Text, int[], Text, IntArrayWritable> {
public void reduce(Text key, Iterable<IntArrayWritable> values,
Context context
) throws IOException, InterruptedException {
int sum1 = 0;
int sum2 = 0;
int sum3 = 0;
for (IntArrayWritable val : values) {
IntWritable[] temp = new IntWritable[3];
temp = val.get();
sum1 += temp[0].get();
sum2 += temp[1].get();
sum3 += temp[2].get();
}
IntWritable[] intArray = new IntWritable[3];
intArray[0] = new IntWritable(sum1);
intArray[1] = new IntWritable(sum2);
intArray[2] = new IntWritable(sum3);
IntArrayWritable result = new IntArrayWritable(intArray);
context.write(key, result);
}
}
当我想对3个值求和时,我定义了从ArrayWritable继承的Class IntArrayWritable。 ArrayWritable包含Writable []-s
import org.apache.hadoop.io.ArrayWritable;
import org.apache.hadoop.io.IntWritable;
public class IntArrayWritable extends ArrayWritable {
public IntArrayWritable(IntWritable[] values) {
super(IntWritable.class, values);
}
public IntArrayWritable() {
super(IntWritable.class);
}
@Override
public IntWritable[] get() {
return (IntWritable[]) super.get();
}
@Override
public String toString() {
IntWritable[] values = get();
return values[0].toString() + ", " + values[1].toString() + ", " +
values[2].toString();
}
}
我真的不明白为什么它不能转换为“return(IntWritable [])super.get();”。
17/11/21 04:00:26 WARN mapred.LocalJobRunner: job_local1623924180_0001
java.lang.Exception: java.lang.ClassCastException: [Lorg.apache.hadoop.io.Writable; cannot be cast to [Lorg.apache.hadoop.io.IntWritable;
at org.apache.hadoop.mapred.LocalJobRunner$Job.runTasks(LocalJobRunner.java:462)
at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:529)
Caused by: java.lang.ClassCastException: [Lorg.apache.hadoop.io.Writable; cannot be cast to [Lorg.apache.hadoop.io.IntWritable;
at IntArrayWritable.get(IntArrayWritable.java:15)
at IntArrayWritable.toString(IntArrayWritable.java:22)
at org.apache.hadoop.mapreduce.lib.output.TextOutputFormat$LineRecordWriter.writeObject(TextOutputFormat.java:85)
at org.apache.hadoop.mapreduce.lib.output.TextOutputFormat$LineRecordWriter.write(TextOutputFormat.java:104)
at org.apache.hadoop.mapred.ReduceTask$NewTrackingRecordWriter.write(ReduceTask.java:558)
at org.apache.hadoop.mapreduce.task.TaskInputOutputContextImpl.write(TaskInputOutputContextImpl.java:89)
at org.apache.hadoop.mapreduce.lib.reduce.WrappedReducer$Context.write(WrappedReducer.java:105)
at org.apache.hadoop.mapreduce.Reducer.reduce(Reducer.java:150)
at org.apache.hadoop.mapreduce.Reducer.run(Reducer.java:171)
at org.apache.hadoop.mapred.ReduceTask.runNewReducer(ReduceTask.java:627)
at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:389)
at org.apache.hadoop.mapred.LocalJobRunner$Job$ReduceTaskRunnable.run(LocalJobRunner.java:319)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
我非常感谢您的帮助。
坦!
最佳答案
首先,Reducer<Text, int[],
应该具有可写类型,而不是int[]
但是,您可以使用映射器中逗号分隔的Text Writable值。
仅通过传递数组来编写自己的Writable类没有明显的好处。
您可以从化简器解析和求和