我下面有以下数据。注意年龄有楠。我的目标是正确估算所有列。
+----+-------------+----------+--------+------+-------+-------+---------+
| ID | PassengerId | Survived | Pclass | Age | SibSp | Parch | Fare |
+----+-------------+----------+--------+------+-------+-------+---------+
| 0 | 1 | 0 | 3 | 22.0 | 1 | 0 | 7.2500 |
| 1 | 2 | 1 | 1 | 38.0 | 1 | 0 | 71.2833 |
| 2 | 3 | 1 | 3 | 26.0 | 0 | 0 | 7.9250 |
| 3 | 4 | 1 | 1 | 35.0 | 1 | 0 | 53.1000 |
| 4 | 5 | 0 | 3 | 35.0 | 0 | 0 | 8.0500 |
| 5 | 6 | 0 | 3 | NaN | 0 | 0 | 8.4583 |
+----+-------------+----------+--------+------+-------+-------+---------+
我有一个可插补所有列的工作代码。结果如下。结果看起来有问题。
+----+-------------+----------+--------+-----------+-------+-------+---------+
| ID | PassengerId | Survived | Pclass | Age | SibSp | Parch | Fare |
+----+-------------+----------+--------+-----------+-------+-------+---------+
| 0 | 1.0 | 0.0 | 3.0 | 22.000000 | 1.0 | 0.0 | 7.2500 |
| 1 | 2.0 | 1.0 | 1.0 | 38.000000 | 1.0 | 0.0 | 71.2833 |
| 2 | 3.0 | 1.0 | 3.0 | 26.000000 | 0.0 | 0.0 | 7.9250 |
| 3 | 4.0 | 1.0 | 1.0 | 35.000000 | 1.0 | 0.0 | 53.1000 |
| 4 | 5.0 | 0.0 | 3.0 | 35.000000 | 0.0 | 0.0 | 8.0500 |
| 5 | 6.0 | 0.0 | 3.0 | 2.909717 | 0.0 | 0.0 | 8.4583 |
+----+-------------+----------+--------+-----------+-------+-------+---------+
我的代码如下:
import pandas as pd
import numpy as np
#https://www.kaggle.com/shivamp629/traincsv/downloads/traincsv.zip/1
data = pd.read_csv("train.csv")
data2 = data[['PassengerId', 'Survived','Pclass','Age','SibSp','Parch','Fare']].copy()
from sklearn.preprocessing import Imputer
fill_NaN = Imputer(missing_values=np.nan, strategy='mean', axis=1)
data2_im = pd.DataFrame(fill_NaN.fit_transform(data2), columns = data2.columns)
data2_im
年龄是2.909717,很奇怪。是否有进行简单均值插补的正确方法。我可以逐列进行操作,但语法/方法尚不清楚。谢谢你的帮助。
最佳答案
您问题的根源是这一行:
fill_NaN = Imputer(missing_values=np.nan, strategy='mean', axis=1)
,这意味着您正在平均行(橙色和苹果)。
尝试将其更改为:
fill_NaN = Imputer(missing_values=np.nan, strategy='mean', axis=0) # axis=0
您将获得预期的行为。
strategy='median'
可能会更好,因为它对异常值具有强大的抵抗力:fill_NaN = Imputer(missing_values=np.nan, strategy='median', axis=0)
关于python - 如何在Python/Sklearn中进行适当的插补,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/55115958/