问题分析
这题感觉就是有很多种方法,然后一种都写不明白……
首先分为3种情况:
可以从叶子向上一层一层处理。第一个情况比较好判断;剩下两种情况通过对应节点儿子的个数来判断。注意第二种情况叶节点最大深度差只能是1,其他的点不能有深度差(毕竟是完全二叉树)。
参考程序
#include <bits/stdc++.h>
//#include <unistd.h>
using namespace std;
const int Maxn = 131100;
struct edge {
int To, Next;
edge() {}
edge( int _To, int _Next ) : To( _To ), Next( _Next ) {}
};
edge Edge[ Maxn << 1 ];
int Start[ Maxn ], Used;
inline void AddEdge( int x, int y ) {
Edge[ ++Used ] = edge( y, Start[ x ] );
Start[ x ] = Used;
return;
}
int deep, n;
int Deg[ Maxn ], Dep[ Maxn ], Deep, Son[ Maxn ];
int Rec[ Maxn ], Left, Vis[ Maxn ];
int Ans[ 10 ];
int main() {
scanf( "%d", &deep );
n = 1; for( int i = 1; i <= deep; ++i ) n *= 2; n -= 2;
memset( Deg, 0, sizeof( Deg ) );
for( int i = 1; i < n; ++i ) {
int x, y;
scanf( "%d%d", &x, &y );
AddEdge( x, y );
AddEdge( y, x );
++Deg[ x ]; ++Deg[ y ];
}
Left = n;
Deep = 1;
for( int i = 1; i <= n; ++i )
if( Deg[ i ] == 1 )
Dep[ i ] = Deep;
while( Left > 1 ) {
//printf( "========================================\n" );
//printf( "Deg B:\n" );
//for( int i = 1; i <= n; ++i ) printf( "%d ", Deg[ i ] );
//printf( "\n" );
Rec[ 0 ] = 0;
for( int i = 1; i <= n; ++i )
if( Deg[ i ] == 1 ) {
Rec[ ++Rec[ 0 ] ] = i;
if( Son[ i ] != 3 && Dep[ i ] != Deep ) {
printf( "0\n" );
return 0;
}
if( Son[ i ] == 3 && Dep[ i ] + 1 != Deep ) {
printf( "0\n" );
return 0;
}
if( Son[ i ] != 2 && Son[ i ] != 0 ) {
if( Ans[ 0 ] ) {
printf( "0\n" );
return 0;
}
Ans[ ++Ans[ 0 ] ] = i;
}
}
//printf( "Rec %d\n", Rec[ 0 ] );
//for( int i = 1; i <= Rec[ 0 ]; ++i ) printf( "%d ", Rec[ i ] );
//printf( "\n" );
if( Rec[ 0 ] == 2 && Left == 2 ) {
if( Ans[ 0 ] ) {
printf( "0\n" );
return 0;
}
printf( "2\n%d %d\n", Rec[ 1 ], Rec[ 2 ] );
return 0;
}
for( int i = 1; i <= Rec[ 0 ]; ++i )
Vis[ Rec[ i ] ] = 1;
for( int i = 1; i <= Rec[ 0 ]; ++i ) {
int u = Rec[ i ];
for( int t = Start[ u ]; t; t = Edge[ t ].Next ) {
int v = Edge[ t ].To;
if( Vis[ v ] ) continue;
--Deg[ u ]; --Deg[ v ];
++Son[ v ];
if( Dep[ v ] == 0 ) Dep[ v ] = Deep + 1;
}
}
Left -= Rec[ 0 ];
++Deep;
//printf( "Deg A:\n" );
//for( int i = 1; i <= n; ++i ) printf( "%d ", Deg[ i ] );
//printf( "\n" );
//printf( "Left = %d\n", Left );
//printf( "Son:\n" );
//for( int i = 1; i <= n; ++i ) printf( "%d ", Son[ i ] );
//printf( "\n" );
//printf( "Ans = %d\n", Ans[ 0 ] );
//sleep( 3 );
}
printf( "1\n%d\n", Ans[ 1 ] );
return 0;
}