Seaborn箱形图具有whis='range'
来绘制最小/最大离群值,但是小提琴图在其文档中没有此内容。如何在小提琴中使用boxplot参数?
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
a=[195.0, 245.0, 142.0, 237.0, 153.0, 238.0, 168.0, 145.0, 229.0, 138.0, 176.0, 116.0, 252.0, 148.0, 199.0, 162.0, 134.0, 163.0, 130.0, 339.0, 152.0, 208.0, 152.0, 192.0, 163.0, 249.0, 113.0, 176.0, 123.0, 189.0, 150.0, 207.0, 184.0, 153.0, 228.0, 153.0, 170.0, 118.0, 302.0, 197.0, 211.0, 159.0, 228.0, 147.0, 166.0, 156.0, 167.0, 147.0, 126.0, 155.0, 138.0, 159.0, 139.0, 111.0, 133.0, 134.0, 131.0, 156.0, 240.0, 207.0, 150.0, 207.0, 265.0, 151.0, 173.0, 157.0, 261.0, 186.0, 195.0, 158.0, 272.0, 134.0, 221.0, 131.0, 252.0, 148.0, 178.0, 206.0, 146.0, 217.0, 159.0, 190.0, 156.0, 172.0, 159.0, 141.0, 167.0, 168.0, 218.0, 191.0, 207.0, 164.0]
fig, axes = plt.subplots()
# Seaborn violin plot
#sns.violinplot(data=a, whis='range') doesn't work
sns.violinplot(data=a)
# Normal boxplot has full range, same in Seaborn boxplot
# axes.boxplot(a, whis='range')
plt.show()
最佳答案
解决方案当然可以是在普通的箱形图上叠加一个确实有whis='range'
自变量的正交箱形图。
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
a=[195.0, 245.0, 142.0, 237.0, 153.0, 238.0, 168.0, 145.0, 229.0, 138.0, 176.0, 116.0, 252.0, 148.0,
199.0, 162.0, 134.0, 163.0, 130.0, 339.0, 152.0, 208.0, 152.0, 192.0, 163.0, 249.0, 113.0, 176.0,
123.0, 189.0, 150.0, 207.0, 184.0, 153.0, 228.0, 153.0, 170.0, 118.0, 302.0, 197.0, 211.0, 159.0,
228.0, 147.0, 166.0, 156.0, 167.0, 147.0, 126.0, 155.0, 138.0, 159.0, 139.0, 111.0, 133.0, 134.0,
131.0, 156.0, 240.0, 207.0, 150.0, 207.0, 265.0, 151.0, 173.0, 157.0, 261.0, 186.0, 195.0, 158.0,
272.0, 134.0, 221.0, 131.0, 252.0, 148.0, 178.0, 206.0, 146.0, 217.0, 159.0, 190.0, 156.0, 172.0,
159.0, 141.0, 167.0, 168.0, 218.0, 191.0, 207.0, 164.0]
fig, axes = plt.subplots()
# Seaborn violin plot
sns.violinplot(data=a, color="#af52f4", inner=None, linewidth=0, saturation=0.5)
# Normal boxplot has full range, same in Seaborn boxplot
axes.boxplot(a, whis='range', positions=np.array([0]),
showcaps=False,widths=0.06, patch_artist=True,
boxprops=dict(color="indigo", facecolor="indigo"),
whiskerprops=dict(color="indigo", linewidth=2),
medianprops=dict(color="w", linewidth=2 ))
axes.set_xlim(-1,1)
plt.show()