我正在研究的算法需要在几个地方计算一种矩阵三乘积。
该操作采用三个具有相同尺寸的正方形矩阵,并生成一个3索引张量。标记操作数A
,B
和C
,结果的第(i,j,k)
个元素是
X[i,j,k] = \sum_a A[i,a] B[a,j] C[k,a]
在numpy中,您可以使用
einsum('ia,aj,ka->ijk', A, B, C)
进行计算。问题:
最佳答案
简介和解决方案代码
np.einsum
确实很难被击败,,但是在极少数情况下,如果可以将matrix-multiplication
引入计算中,您仍然可以击败它。经过几次试验,看来您可以引入 matrix-multiplication with np.dot
来超越np.einsum('ia,aj,ka->ijk', A, B, C)
的性能。
基本思想是将“所有einsum”操作分解为np.einsum
和np.dot
的组合,如下所示:
A:[i,a]
完成B:[a,j]
和np.einsum
的求和,以得到3D array:[i,j,a]
。 2D array:[i*j,a]
,将第三个数组C[k,a]
转换为[a,k]
,目的是在这两个数组之间执行matrix-multiplication
,从而使[i*j,k]
作为矩阵乘积,因为我们在那里丢失了索引[a]
。 3D array:[i,j,k]
以得到最终输出。 这是到目前为止讨论的第一个版本的实现-
import numpy as np
def tensor_prod_v1(A,B,C): # First version of proposed method
# Shape parameters
m,d = A.shape
n = B.shape[1]
p = C.shape[0]
# Calculate \sum_a A[i,a] B[a,j] to get a 3D array with indices as (i,j,a)
AB = np.einsum('ia,aj->ija', A, B)
# Calculate entire summation losing a-ith index & reshaping to desired shape
return np.dot(AB.reshape(m*n,d),C.T).reshape(m,n,p)
由于我们正在对所有三个输入数组的a-th
索引求和,因此可以使用三种不同的方法沿第a个索引求和。前面列出的代码是(A,B)
。因此,我们还可以使用(A,C)
和(B,C)
为我们提供另外两个变体,如下所示:def tensor_prod_v2(A,B,C):
# Shape parameters
m,d = A.shape
n = B.shape[1]
p = C.shape[0]
# Calculate \sum_a A[i,a] C[k,a] to get a 3D array with indices as (i,k,a)
AC = np.einsum('ia,ja->ija', A, C)
# Calculate entire summation losing a-ith index & reshaping to desired shape
return np.dot(AC.reshape(m*p,d),B).reshape(m,p,n).transpose(0,2,1)
def tensor_prod_v3(A,B,C):
# Shape parameters
m,d = A.shape
n = B.shape[1]
p = C.shape[0]
# Calculate \sum_a B[a,j] C[k,a] to get a 3D array with indices as (a,j,k)
BC = np.einsum('ai,ja->aij', B, C)
# Calculate entire summation losing a-ith index & reshaping to desired shape
return np.dot(A,BC.reshape(d,n*p)).reshape(m,n,p)
根据输入数组的形状,不同的方法彼此之间会产生不同的加速,但是我们希望所有方法都比all-einsum
方法更好。性能编号在下一部分中列出。运行时测试
这可能是最重要的部分,因为我们尝试使用建议的方法的三种变体来研究加速倍数。
问题中最初提出的
all-einsum
方法。数据集#1(相等形状的数组):
In [494]: L1 = 200
...: L2 = 200
...: L3 = 200
...: al = 200
...:
...: A = np.random.rand(L1,al)
...: B = np.random.rand(al,L2)
...: C = np.random.rand(L3,al)
...:
In [495]: %timeit tensor_prod_v1(A,B,C)
...: %timeit tensor_prod_v2(A,B,C)
...: %timeit tensor_prod_v3(A,B,C)
...: %timeit np.einsum('ia,aj,ka->ijk', A, B, C)
...:
1 loops, best of 3: 470 ms per loop
1 loops, best of 3: 391 ms per loop
1 loops, best of 3: 446 ms per loop
1 loops, best of 3: 3.59 s per loop
数据集2(更大的A):In [497]: L1 = 1000
...: L2 = 100
...: L3 = 100
...: al = 100
...:
...: A = np.random.rand(L1,al)
...: B = np.random.rand(al,L2)
...: C = np.random.rand(L3,al)
...:
In [498]: %timeit tensor_prod_v1(A,B,C)
...: %timeit tensor_prod_v2(A,B,C)
...: %timeit tensor_prod_v3(A,B,C)
...: %timeit np.einsum('ia,aj,ka->ijk', A, B, C)
...:
1 loops, best of 3: 442 ms per loop
1 loops, best of 3: 355 ms per loop
1 loops, best of 3: 303 ms per loop
1 loops, best of 3: 2.42 s per loop
数据集3(更大的B):In [500]: L1 = 100
...: L2 = 1000
...: L3 = 100
...: al = 100
...:
...: A = np.random.rand(L1,al)
...: B = np.random.rand(al,L2)
...: C = np.random.rand(L3,al)
...:
In [501]: %timeit tensor_prod_v1(A,B,C)
...: %timeit tensor_prod_v2(A,B,C)
...: %timeit tensor_prod_v3(A,B,C)
...: %timeit np.einsum('ia,aj,ka->ijk', A, B, C)
...:
1 loops, best of 3: 474 ms per loop
1 loops, best of 3: 247 ms per loop
1 loops, best of 3: 439 ms per loop
1 loops, best of 3: 2.26 s per loop
数据集4(C较大):In [503]: L1 = 100
...: L2 = 100
...: L3 = 1000
...: al = 100
...:
...: A = np.random.rand(L1,al)
...: B = np.random.rand(al,L2)
...: C = np.random.rand(L3,al)
In [504]: %timeit tensor_prod_v1(A,B,C)
...: %timeit tensor_prod_v2(A,B,C)
...: %timeit tensor_prod_v3(A,B,C)
...: %timeit np.einsum('ia,aj,ka->ijk', A, B, C)
...:
1 loops, best of 3: 250 ms per loop
1 loops, best of 3: 358 ms per loop
1 loops, best of 3: 362 ms per loop
1 loops, best of 3: 2.46 s per loop
数据集#5(较大的ath尺寸长度):In [506]: L1 = 100
...: L2 = 100
...: L3 = 100
...: al = 1000
...:
...: A = np.random.rand(L1,al)
...: B = np.random.rand(al,L2)
...: C = np.random.rand(L3,al)
...:
In [507]: %timeit tensor_prod_v1(A,B,C)
...: %timeit tensor_prod_v2(A,B,C)
...: %timeit tensor_prod_v3(A,B,C)
...: %timeit np.einsum('ia,aj,ka->ijk', A, B, C)
...:
1 loops, best of 3: 373 ms per loop
1 loops, best of 3: 269 ms per loop
1 loops, best of 3: 299 ms per loop
1 loops, best of 3: 2.38 s per loop
结论:我们看到了 8x-10x
的加速发展,与问题中列出的all-einsum
方法相比,提议的方法有所不同。关于matlab - 矩阵/张量三乘积?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/30206293/