我正在R中创建一个Flexdashboard。我希望该仪表板既包含一个表又包含一系列可视化效果,这些可视化效果可以通过输入进行过滤。
由于我需要在本地交付仪表板(没有在后台运行服务器),因此我无法使用Shiny,因此我依赖串扰。
我知道相声包在前端提供的功能有限。例如,文档说您不能聚合SharedData对象。
但是,我不清楚是否可以使用相同的输入来过滤两个不同的数据帧。
例如,假设我有:
df1 “Mark”),类别=“factor”),hp = c(250,120,250,100,110),
car = structure(c(2L,2L,2L,1L,1L),.Label = c(“benz”,
“bmw”),class =“factor”),id = structure(1:5,.Label = c(“car1”,
“car2”,“car3”,“car4”,“car5”),class =“factor”)),.names = c(“owner”,
“hp”,“car”,“id”),row.names = c(NA,-5L),class =“data.frame”)
df2
这两个数据框包含具有相同值的列-car和所有者。以及其他列。
我可以创建两个不同的对象:
library(crosstalk)
shared_df1 <- SharedData$new(df1)
shared_df2 <- SharedData$new(df2)
然后:
filter_select("owner", "Car owner:", shared_df1, ~ owner)
filter_select("owner", "Car owner:", shared_df2, ~ owner)
但是,这意味着用户将需要两次填充实质上相同的输入。另外,如果表很大,这会使使用仪表板所需的内存大小增加一倍。
是否可以解决串扰中的此问题?
最佳答案
嗯,我最近也遇到了这个问题,SharedData$new(..., group = )
还有另一个参数!组参数似乎可以解决问题。当我有两个数据框并使用group =
时,我偶然发现了它。
如果您创建一个sharedData对象,它将包含
我认为发生的情况是串扰通过键过滤了sharedData-对于同一组中的所有sharedData对象!因此,只要两个数据帧使用相同的 key ,您就应该能够将它们一起过滤到一个组中。
这应该适合您的示例。
---
title: "blabla"
output:
flexdashboard::flex_dashboard:
orientation: rows
social: menu
source_code: embed
theme: cerulean
---
```{r}
library(plotly)
library(crosstalk)
library(tidyverse)
```
```{r Make dataset}
df1 <- structure(list(owner = structure(c(1L, 2L, 2L, 2L, 2L), .Label = c("John", "Mark"), class = "factor"), hp = c(250, 120, 250, 100, 110), car = structure(c(2L, 2L, 2L, 1L, 1L), .Label = c("benz", "bmw"), class = "factor"), id = structure(1:5, .Label = c("car1", "car2", "car3", "car4", "car5"), class = "factor")), .Names = c("owner", "hp", "car", "id"), row.names = c(NA, -5L), class = "data.frame")
df2 <- structure(list(car = structure(c(1L, 2L, 1L, 2L), .Label = c("benz",
"bmw"), class = "factor"), owner = structure(c(1L, 1L, 2L, 2L
), .Label = c("John", "Mark"), class = "factor"), freq = c(0L,
1L, 2L, 2L)), .Names = c("car", "owner", "freq"), row.names = c(NA,
-4L), class = "data.frame")
```
#
##
### Filters
```{r}
library(crosstalk)
# Notice the 'group = ' argument - this does the trick!
shared_df1 <- SharedData$new(df1, ~owner, group = "Choose owner")
shared_df2 <- SharedData$new(df2, ~owner, group = "Choose owner")
filter_select("owner", "Car owner:", shared_df1, ~owner)
# You don't need this second filter now
# filter_select("owner", "Car owner:", shared_df2, ~ owner)
```
### Plot1 with plotly
```{r}
plot_ly(shared_df1, x = ~id, y = ~hp, color = ~owner) %>% add_markers() %>% highlight("plotly_click")
```
### Plots with plotly
```{r}
plot_ly(shared_df2, x = ~owner, y = ~freq, color = ~car) %>% group_by(owner) %>% add_bars()
```
##
### Dataframe 1
```{r}
DT::datatable(shared_df1)
```
### Dataframe 2
```{r}
DT::datatable(shared_df2)
```
我花了一些时间尝试通过使用
plot_ly()
从plotly_data()
提取数据而没有运气,直到我找出答案。这就是为什么存在一些带有plotly的非常简单的图的原因。关于r - 过滤带有串扰的两个表,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/48581598/