例子df
retailer_dict = {
'id': [1, 2, 3, 1, 1, 3],
'gender': ['Men', 'Women', 'Men', 'Women', 'Men', 'Women'],
'category': ['western', 'formal', 'casual', 'western', 'formal', 'casual']
}
df = pd.DataFrame(retailer_dict); df
# Output
id gender category
0 1 Men western
1 2 Women formal
2 3 Men casual
3 1 Women western
4 1 Men formal
5 3 Women casual
我想按ID分组,并将每个元素的计数显示为一个值。
到目前为止我尝试过的是:
df.groupby('id')['gender'].value_counts()
# Output
id gender
1 Men 2
Women 1
2 Women 1
3 Men 1
Women 1
Name: gender, dtype: int64
也:
df.groupby('id')['gender'].apply(list)
但是我不知道如何对多个列执行相同的操作。
例:
# gives AttributeError
df.groupby('id')[['gender', 'category']].value_counts()
# Provides unuseful output
df.groupby('id')[['gender', 'category']].apply(list)
# Output
id
1 [gender, category]
2 [gender, category]
3 [gender, category]
dtype: object
预期产量:
id gender category
1 {Men: 2, Women:1} {western: 2, formal:1}
2 {Women:1} {formal:1}
3 {Men: 1, Women:1} {casual: 2}
任何问题或其他建议将有所帮助。
最佳答案
将GroupBy.agg
与value_counts
一起使用并转换为dict
:
print (df.groupby('id')['gender', 'category'].agg(lambda x: x.value_counts().to_dict()))
要么:
from collections import Counter
print (df.groupby('id')['gender', 'category'].agg(lambda x: Counter(x)))
gender category
id
1 {'Men': 2, 'Women': 1} {'western': 2, 'formal': 1}
2 {'Women': 1} {'formal': 1}
3 {'Women': 1, 'Men': 1} {'casual': 2}
如果需要再次用列表填充新列,请使用
agg
:print (df.groupby('id')['gender', 'category'].agg(list))
gender category
id
1 [Men, Women, Men] [western, western, formal]
2 [Women] [formal]
3 [Men, Women] [casual, casual]
将
value_counts
与多个列一起使用是有问题的,因为创建了具有两个列的值的MultiIndex
第二级:print (pd.concat([df.groupby('id')['gender'].value_counts(),
df.groupby('id')['category'].value_counts()]))
id gender
1 Men 2
Women 1
2 Women 1
3 Men 1
Women 1
1 western 2
formal 1
2 formal 1
3 casual 2
dtype: int64
关于python - Pandas Group通过单个列并显示多个列作为值计数,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/57818136/