我使用sci-kit / python将数据与PLS模型拟合。我注意到Python 3.7 / Sci-kit 0.20.1的结果大约是Python 2.7 / Sci-kit 0.17的一半。与其他代码相比,似乎应该期望Python2.7 / Sci-kit 0.17的结果。谁能帮助我了解我在做什么错?
我使用的代码完全相同,如下所示:
import pandas as pd
import numpy as np
import sklearn
from sklearn.cross_decomposition import PLSRegression
df = pd.read_csv('PSLR.csv', delimiter=';')
y = df['R']
X = df[['A','B','C','D','E','F','G','H']]
pls2 = PLSRegression(n_components=3)
pls2.fit(X, y)
print(pls2.coef_)
y_intercept = pls2.y_mean_ - np.dot(pls2.x_mean_ , pls2.coef_)
print (y_intercept)
数据为:
R A B C D E F G H
0 149 1 0 0 0 0 0 1 0
1 98 0 1 0 0 0 0 1 0
2 72 0 0 1 0 0 0 1 0
3 74 0 0 0 1 0 0 1 0
4 124 1 0 0 0 0 0 0 1
5 71 0 1 0 0 0 0 0 1
6 53 0 0 1 0 0 0 0 1
7 64 0 0 0 1 0 0 0 1
8 186 1 0 0 0 1 1 1 0
9 127 0 1 0 0 1 1 1 0
10 121 0 0 1 0 1 1 1 0
11 104 0 0 0 1 1 1 1 0
12 98 1 0 0 0 0 1 1 1
13 64 0 1 0 0 0 1 1 1
14 38 0 0 1 0 0 1 1 1
15 17 0 0 0 1 0 1 1 1
以及使用Python 3.7 / sci-kit 0.20的结果:
[[ 21.31738122]
[ -0.55514014]
[ -8.9932702 ]
[-11.76897088]
[ 20.21781964]
[ -5.65972552]
[ -5.76695658]
[-18.17454004]]
[102.43789531]
但是使用Python 2.7 / Sci-kit 0.17:
[[ 47.66711352]
[ -1.24133108]
[-20.10956351]
[-26.31621892]
[ 45.20841908]
[-10.96001135]
[-12.89530694]
[-35.19484545]]
[112.69680383]
最佳答案
我找到了解决方案:
pls的“ scale”选项的默认值已更改:scale=False
产生我想要的前置因子。
关于python - sci-kit版本的PLS结果已更改,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/53589761/