我有一个数据集,其中包括2个科目的学生成绩,以及学生是否被大学录取的结果。我需要对数据进行逻辑回归,并找到最佳参数θ以最大程度地减少损失并预测测试数据的结果。我不是在这里尝试建立任何复杂的非线性网络。
数据看起来像这样
我已经为逻辑回归定义了损失函数,效果很好
predict(X) = sigmoid(X*θ)
loss(X,y) = (1 / length(y)) * sum(-y .* log.(predict(X)) .- (1 - y) .* log.(1 - predict(X)))
我需要最小化此损失函数并找到最佳θ。我想用Flux.jl或任何其他库来做到这一点,这甚至变得更加容易。
阅读示例后,我尝试使用Flux.jl,但无法将成本降至最低。
我的代码段:
function update!(ps, η = .1)
for w in ps
w.data .-= w.grad .* η
print(w.data)
w.grad .= 0
end
end
for i = 1:400
back!(L)
update!((θ, b))
@show L
end
最佳答案
您可以使用GLM.jl(更简单)或Flux.jl(更复杂但总体上更强大)。
在代码中,我生成了数据,以便您可以检查结果是否正确。此外,我还有一个二进制响应变量-如果您对目标变量进行了其他编码,则可能需要稍微更改代码。
这是要运行的代码(您可以调整参数以提高收敛速度-我选择了安全的参数):
using GLM, DataFrames, Flux.Tracker
srand(1)
n = 10000
df = DataFrame(s1=rand(n), s2=rand(n))
df[:y] = rand(n) .< 1 ./ (1 .+ exp.(-(1 .+ 2 .* df[1] .+ 0.5 .* df[2])))
model = glm(@formula(y~s1+s2), df, Binomial(), LogitLink())
x = Matrix(df[1:2])
y = df[3]
W = param(rand(2,1))
b = param(rand(1))
predict(x) = 1.0 ./ (1.0+exp.(-x*W .- b))
loss(x,y) = -sum(log.(predict(x[y,:]))) - sum(log.(1 - predict(x[.!y,:])))
function update!(ps, η = .0001)
for w in ps
w.data .-= w.grad .* η
w.grad .= 0
end
end
i = 1
while true
back!(loss(x,y))
max(maximum(abs.(W.grad)), abs(b.grad[1])) > 0.001 || break
update!((W, b))
i += 1
end
结果如下:
julia> model # GLM result
StatsModels.DataFrameRegressionModel{GLM.GeneralizedLinearModel{GLM.GlmResp{Array{Float64,1},Distributions.Binomial{Float64},GLM.LogitLink},GLM.DensePredChol{Float64,Base.LinAlg.Cholesky{Float64,Array{Float64,2}}}},Array{Float64,2}}
Formula: y ~ 1 + s1 + s2
Coefficients:
Estimate Std.Error z value Pr(>|z|)
(Intercept) 0.910347 0.0789283 11.5338 <1e-30
s1 2.18707 0.123487 17.7109 <1e-69
s2 0.556293 0.115052 4.83513 <1e-5
julia> (b, W, i) # Flux result with number of iterations needed to converge
(param([0.910362]), param([2.18705; 0.556278]), 1946)
关于machine-learning - 使用Flux.jl进行逻辑回归,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/49135107/