我想在 Pandas 中做到这一点:
我有2个数据帧,A和B,我只想用B值替换A的NaN。
A
2014-04-17 12:59:00 146.06250 146.0625 145.93750 145.93750
2014-04-17 13:00:00 145.90625 145.9375 145.87500 145.90625
2014-04-17 13:01:00 145.90625 NaN 145.90625 NaN
2014-04-17 13:02:00 NaN NaN 145.93750 145.96875
B
2014-04-17 12:59:00 146 2/32 146 2/32 145 30/32 145 30/32
2014-04-17 13:00:00 145 29/32 145 30/32 145 28/32 145 29/32
2014-04-17 13:01:00 145 29/32 146 145 29/32 147
2014-04-17 13:02:00 146 146 145 30/32 145 31/32
Result:
2014-04-17 12:59:00 146.06250 146.0625 145.93750 145.93750
2014-04-17 13:00:00 145.90625 145.9375 145.87500 145.90625
2014-04-17 13:01:00 145.90625 146 145.90625 147
2014-04-17 13:02:00 146 146 145.93750 145.96875
最佳答案
确切的方法是A.combine_first(B)
。进一步的信息在official documentation中。
但是,它比A.fillna(B)
的大型数据库(执行的测试包含25000个元素)的性能要好得多:
In[891]: %timeit df.fillna(df2)
1000 loops, best of 3: 333 µs per loop
In[892]: %timeit df.combine_first(df2)
100 loops, best of 3: 2.15 ms per loop
In[894]: (df.fillna(df2) == df.combine_first(df2)).all().all()
Out[890]: True