我已经进行了广泛的搜索,但还没有找到这个问题的合适答案。给定球体上的两条线,每条线由它们的起点和终点定义,确定它们是否相交以及在哪里相交。我发现这个站点 ( http://mathforum.org/library/drmath/view/62205.html ) 运行了一个很好的算法来处理两个大圆的交点,尽管我一直在确定给定的点是否位于大圆的有限部分。

我发现有几个网站声称他们已经实现了这一点,包括这里和 stackexchange 上的一些问题,但它们似乎总是回到两个大圆圈的交叉点。

我正在编写的 python 类如下,似乎几乎可以工作:

class Geodesic(Boundary):
  def _SecondaryInitialization(self):
    self.theta_1 = self.point1.theta
    self.theta_2 = self.point2.theta
    self.phi_1 = self.point1.phi
    self.phi_2 = self.point2.phi

    sines = math.sin(self.phi_1) * math.sin(self.phi_2)
    cosines = math.cos(self.phi_1) * math.cos(self.phi_2)
    self.d = math.acos(sines - cosines * math.cos(self.theta_2 - self.theta_1))

    self.x_1 = math.cos(self.theta_1) * math.cos(self.phi_1)
    self.x_2 = math.cos(self.theta_2) * math.cos(self.phi_2)
    self.y_1 = math.sin(self.theta_1) * math.cos(self.phi_1)
    self.y_2 = math.sin(self.theta_2) * math.cos(self.phi_2)
    self.z_1 = math.sin(self.phi_1)
    self.z_2 = math.sin(self.phi_2)

    self.theta_wraps = (self.theta_2 - self.theta_1 > PI)
    self.phi_wraps = ((self.phi_1 < self.GetParametrizedCoords(0.01).phi and
        self.phi_2 < self.GetParametrizedCoords(0.99).phi) or (
        self.phi_1 > self.GetParametrizedCoords(0.01).phi) and
        self.phi_2 > self.GetParametrizedCoords(0.99))

  def Intersects(self, boundary):
    A = self.y_1 * self.z_2 - self.z_1 * self.y_2
    B = self.z_1 * self.x_2 - self.x_1 * self.z_2
    C = self.x_1 * self.y_2 - self.y_1 * self.x_2
    D = boundary.y_1 * boundary.z_2 - boundary.z_1 * boundary.y_2
    E = boundary.z_1 * boundary.x_2 - boundary.x_1 * boundary.z_2
    F = boundary.x_1 * boundary.y_2 - boundary.y_1 * boundary.x_2

    try:
      z = 1 / math.sqrt(((B * F - C * E) ** 2 / (A * E - B * D) ** 2)
          + ((A * F - C * D) ** 2 / (B * D - A * E) ** 2) + 1)
    except ZeroDivisionError:
      return self._DealWithZeroZ(A, B, C, D, E, F, boundary)

    x = ((B * F - C * E) / (A * E - B * D)) * z
    y = ((A * F - C * D) / (B * D - A * E)) * z

    theta = math.atan2(y, x)
    phi = math.atan2(z, math.sqrt(x ** 2 + y ** 2))

    if self._Contains(theta, phi):
      return point.SPoint(theta, phi)

    theta = (theta + 2* PI) % (2 * PI) - PI
    phi = -phi

    if self._Contains(theta, phi):
      return spoint.SPoint(theta, phi)

    return None

  def _Contains(self, theta, phi):
    contains_theta = False
    contains_phi = False

    if self.theta_wraps:
      contains_theta = theta > self.theta_2 or theta < self.theta_1
    else:
      contains_theta = theta > self.theta_1 and theta < self.theta_2

    phi_wrap_param = self._PhiWrapParam()
    if phi_wrap_param <= 1.0 and phi_wrap_param >= 0.0:
      extreme_phi = self.GetParametrizedCoords(phi_wrap_param).phi
      if extreme_phi < self.phi_1:
        contains_phi = (phi < max(self.phi_1, self.phi_2) and
            phi > extreme_phi)
      else:
        contains_phi = (phi > min(self.phi_1, self.phi_2) and
            phi < extreme_phi)
    else:
      contains_phi = (phi > min(self.phi_1, self.phi_2) and
          phi < max(self.phi_1, self.phi_2))

    return contains_phi and contains_theta

  def _PhiWrapParam(self):
    a = math.sin(self.d)
    b = math.cos(self.d)
    c = math.sin(self.phi_2) / math.sin(self.phi_1)
    param = math.atan2(c - b, a) / self.d

    return param

  def _DealWithZeroZ(self, A, B, C, D, E, F, boundary):
    if (A - D) is 0:
      y = 0
      x = 1
    elif (E - B) is 0:
      y = 1
      x = 0
    else:
      y = 1 / math.sqrt(((E - B) / (A - D)) ** 2 + 1)
      x = ((E - B) / (A - D)) * y

    theta = (math.atan2(y, x) + PI) % (2 * PI) - PI
    return point.SPoint(theta, 0)

def GetParametrizedCoords(self, param_value):
    A = math.sin((1 - param_value) * self.d) / math.sin(self.d)
    B = math.sin(param_value * self.d) / math.sin(self.d)

    x = A * math.cos(self.phi_1) * math.cos(self.theta_1) + (
    B * math.cos(self.phi_2) * math.cos(self.theta_2))
    y = A * math.cos(self.phi_1) * math.sin(self.theta_1) + (
        B * math.cos(self.phi_2) * math.sin(self.theta_2))
    z = A * math.sin(self.phi_1) + B * math.sin(self.phi_2)

    new_phi = math.atan2(z, math.sqrt(x**2 + y**2))
    new_theta = math.atan2(y, x)

    return point.SPoint(new_theta, new_phi)

编辑:我忘了指定如果确定两条曲线相交,那么我需要有交点。

最佳答案

一种更简单的方法是用几何基本运算(如 dot productcross producttriple product )来表达问题。 u、v 和 w 的行列式的符号告诉您 v 和 w 跨越的平面的哪一侧包含 u。这使我们能够检测两点何时位于平面的相对位置。这相当于测试一个大圆段是否与另一个大圆相交。执行此测试两次告诉我们两个大圆段是否相互交叉。

实现不需要三角函数,不需要除法,不需要与 pi 进行比较,也不需要围绕极点的特殊行为!

class Vector:
    def __init__(self, x, y, z):
        self.x = x
        self.y = y
        self.z = z

def dot(v1, v2):
    return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z

def cross(v1, v2):
    return Vector(v1.y * v2.z - v1.z * v2.y,
                  v1.z * v2.x - v1.x * v2.z,
                  v1.x * v2.y - v1.y * v2.x)

def det(v1, v2, v3):
    return dot(v1, cross(v2, v3))

class Pair:
    def __init__(self, v1, v2):
        self.v1 = v1
        self.v2 = v2

# Returns True if the great circle segment determined by s
# straddles the great circle determined by l
def straddles(s, l):
    return det(s.v1, l.v1, l.v2) * det(s.v2, l.v1, l.v2) < 0

# Returns True if the great circle segments determined by a and b
# cross each other
def intersects(a, b):
    return straddles(a, b) and straddles(b, a)

# Test. Note that we don't need to normalize the vectors.
print(intersects(Pair(Vector(1, 0, 1), Vector(-1, 0, 1)),
                 Pair(Vector(0, 1, 1), Vector(0, -1, 1))))

如果您想根据角度 theta 和 phi 初始化单位向量,您可以这样做,但我建议立即转换为笛卡尔 (x, y, z) 坐标以执行所有后续计算。

关于python - 球体表面测地线(最短距离路径)之间的交点,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/26668041/

10-16 18:33