我已经写了一个算法,我相信这是正确的计算素数高达N与筛埃拉托舍涅斯。不幸的是,这个程序依赖于非常大的n值(尝试1000万)。这是我写的…
Protected Function Eratosthenes(ByVal n As Integer) As String
Dim maxValue As Integer = Math.Sqrt(n)
Dim values As Generic.List(Of Integer) = New Generic.List(Of Integer)
Dim i As Integer
''//create list.
For i = 2 To n
values.Add(i)
Next
For i = 2 To maxValue
If values.Contains(i) Then
Dim k As Integer
For k = i + 1 To n
If values.Contains(k) Then
If (k Mod i) = 0 Then
values.Remove(k)
End If
End If
Next
End If
Next
Dim result As String = ""
For i = 0 To values.Count - 1
result = result & " " & values(i)
Next
Return result
End Function
我该如何加速这个算法呢?我的瓶颈在哪里?
最佳答案
从大列表中删除元素很慢。
为什么不创建一个布尔值数组,并在知道它是非素数时将其设置为“true”?
当您找到一个新的素数时,不需要遍历所有更高的值,只需要遍历其中的多个值,就可以将array元素设置为true。
如果你想返回素数,你可以为你目前发现的素数保留一个单独的列表。
这是一个C实现,它只是按原样打印出来。(在c中,如果我想返回值,我将返回IEnumerable<T>
并使用迭代器块。)
using System;
public class ShowPrimes
{
static void Main(string[] args)
{
ShowPrimes(10000000);
}
static void ShowPrimes(int max)
{
bool[] composite = new bool[max+1];
int maxFactor = (int) Math.Sqrt(max);
for (int i=2; i <= maxFactor; i++)
{
if (composite[i])
{
continue;
}
Console.WriteLine("Found {0}", i);
// This is probably as quick as only
// multiplying by primes.
for (int multiples = i * i;
multiples <= max;
multiples += i)
{
composite[multiples] = true;
}
}
// Anything left is a prime, but not
// worth sieving
for (int i = maxFactor + 1; i <= max; i++)
{
if (composite[i])
{
continue;
}
Console.WriteLine("Found {0}", i);
}
}
}