我正在学习从tensorflow官方文档Attention Is All You Need应用Transformer model for language understanding提出的转换模型

Positional encoding部分所述:



我的理解是将positional encoding vector直接添加到embedding vector。但是当我查看代码时,发现embedding vector乘以一个常数。

Encoder部分中的代码如下:

class Encoder(tf.keras.layers.Layer):
  def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size,
               rate=0.1):
    super(Encoder, self).__init__()

    self.d_model = d_model
    self.num_layers = num_layers

    self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model)
    self.pos_encoding = positional_encoding(input_vocab_size, self.d_model)


    self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate)
                       for _ in range(num_layers)]

    self.dropout = tf.keras.layers.Dropout(rate)

  def call(self, x, training, mask):

    seq_len = tf.shape(x)[1]

    # adding embedding and position encoding.
    x = self.embedding(x)  # (batch_size, input_seq_len, d_model)
    x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
    x += self.pos_encoding[:, :seq_len, :]

    x = self.dropout(x, training=training)

    for i in range(self.num_layers):
      x = self.enc_layers[i](x, training, mask)

    return x  # (batch_size, input_seq_len, d_model)

我们可以在x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))之前看到x += self.pos_encoding[:, :seq_len, :]

那么,为什么在Transformer模型中添加位置编码之前,将嵌入矢量乘以一个常数?

最佳答案

环顾四周,我发现了这个参数1:

关于python - 为什么在Transformer模型中将嵌入矢量乘以常数?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/56930821/

10-16 00:56