因此,我在一个项目中工作,我需要从服务器中检索粒子数据(可能最多获取数千个对象)(以便同步客户端),并且我正努力寻找多个轨道的倾斜度如何计算的粒子。
到目前为止,我已经知道了轨道的总半径,宽度(粒子的起点和终点)
var asteroidsOrbit = Common.random( 90, 100),
rotation = Math.PI / 2, // Not sure where to use this yet
radians = Common.random(0, 360) * Math.PI / 180;
我还通过设置粒子所需的位置来渲染轨道:
position_x: Math.sin(radians) * asteroidsOrbit,
position_y: Common.random(-10, 10),
position_z: Math.cos(radians) * asteroidsOrbit
我注意到默认情况下,轨道垂直于X平面,其行为应与它垂直。
但是由于
rotation
可能会在x平面上旋转20度,因此应如何对其应用? 最佳答案
我在Python中编写了一些代码,将旋转应用于粒子在3D空间中的速度,这可能会有所帮助:
def make_rotation_matrix(theta=0.,phi=0.,cos_theta=False,cos_phi=False):
"""
Returns a rotation matrix for given angles.
Makes the rotation matrix for a given theta angle around the y axis (polar
angle) followed by another rotation around the z axis by a given phi angle
(azimuthal angle).
Parameters
----------
theta : float
Polar angle, between 0 and pi (or its cosine between -1 and 1).
phi : float
Azimuthal angle, between 0 and 2pi.
cos_theta : boolean
Wether to consider theta as an angle (False) or its cosine (True).
cos_phi : boolean
Wether to consider phi as an angle (False) or its cosine (True).
Returns
----------
out : np.array
Rotation matrix (shape == (3,3)).
Examples
--------
>>> make_rotation_matrix(0,10)
array([[-0.83907153, 0.54402111, -0. ],
[-0.54402111, -0.83907153, -0. ],
[-0. , 0. , 1. ]])
>>> make_rotation_matrix(10,0)
array([[-0.83907153, -0. , -0.54402111],
[-0. , 1. , -0. ],
[ 0.54402111, 0. , -0.83907153]])
>>> make_rotation_matrix(0.1,0,True)
array([[ 0.1 , -0. , 0.99498744],
[ 0. , 1. , 0. ],
[-0.99498744, 0. , 0.1 ]])
"""
if cos_theta:
cos_theta = theta
sin_theta = np.sqrt(1. - cos_theta**2)
else:
cos_theta = np.cos(theta)
sin_theta = np.sin(theta)
if cos_phi:
cos_phi = phi
sin_phi = np.sqrt(1. - cos_phi**2)
else:
cos_phi = np.cos(phi)
sin_phi = np.sin(phi)
return np.array(
[[cos_theta*cos_phi , -sin_phi , sin_theta*cos_phi],
[cos_theta*sin_phi , cos_phi , sin_theta*sin_phi],
[ -sin_theta , 0 , cos_theta ]])
def skew_symmetric_cross_product(vector):
"""
Returns the skew symmetric cross product of given vector.
Parameters
----------
vector : iterable
Iterable object, must have at least 3 elements, corresponding to
the vectors x, y and z components.
Returns
----------
out : np.array
Skew symmetric cross product of the given vector (shape == (3,3)).
Examples
--------
>>> skew_symmetric_cross_product([1,0,0])
array([[ 0., 0., 0.],
[ 0., 0., -1.],
[ 0., 1., 0.]])
>>> skew_symmetric_cross_product([0,1,0])
array([[ 0., 0., 1.],
[ 0., 0., 0.],
[-1., 0., 0.]])
>>> skew_symmetric_cross_product([0,0,1])
array([[ 0., -1., 0.],
[ 1., 0., 0.],
[ 0., 0., 0.]])
"""
return np.array([[ 0. , -vector[2] , vector[1] ],
[ vector[2] , 0. , -vector[0] ],
[ -vector[1] , vector[0] , 0. ]])
def rotation_a2b(a,b):
"""
Returns the rotation matrix that transforms vector a in b.
From
http://math.stackexchange.com/questions/180418/
Parameters
----------
a : iterable
Iterable object, must have at least 3 elements, corresponding to
the vectors x, y and z components.
b : iterable
Similar to a.
Returns
----------
out : np.array
Rotation matrix that transforms a in b (shape == (3,3)).
Examples
--------
>>> rotation_a2b([1,0,0],[1,0,0])
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
>>> rotation_a2b([1,0,0],[0,1,0])
array([[ 0., -1., 0.],
[ 1., 0., 0.],
[ 0., 0., 1.]])
>>> rotation_a2b([1,0,0],[0,0,1])
array([[ 0., 0., -1.],
[ 0., 1., 0.],
[ 1., 0., 0.]])
"""
if np.all(a==b):
return np.identity(3)
v = np.cross(a,b)
v_sscp = skew_symmetric_cross_product(v)
s = np.sqrt(np.dot(v,v))
c = np.dot(a,b)
return np.identity(3) + v_sscp +\
(((1-c)/(s**2))*np.dot(v_sscp,v_sscp))
摘录自我的报告:
因为旋转围绕粒子的速度(
vp
),所以由R
生成的矩阵make_rotation_marix
不能直接应用于vp
-我们必须首先更改基础,以使速度与( 0、0、1)向量,应用旋转,然后将基础更改回原始。由于已知第一个基本变化的结果是(0,0,sp),sp是粒子的速度(速度的大小),因此跳过了第一个基本变化R
应用于(0,0,sp)。为了改变基础,我们使用由函数
Rotation_a2b
提供的,将(0、0、1)改变回初始粒子速度的矩阵。矩阵Ra2b
将向量a
转换为b
,因此以a
=(0,0,1)和b
等于归一化粒子的初始速度进行调用。我们将速度归一化的事实意味着基数的变化会保留矢量的大小-或者可以使用a
=(0,0,sp)。关于javascript - 三维空间中的轨道倾 Angular ,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/42318070/