如何用增加的局部极小值绘制点序列并用另一种颜色标记它们?与图片相似。我无法使用该顺序设置列表,并且最小值是错误的。还是有更简单的方法来做到这一点?
我尝试了这段代码:
import sys
from numpy import NaN, Inf, arange, isscalar, asarray, array
import random
import numpy as np
import matplotlib.pyplot as plt
def peakdet(v, delta, x = None):
'''
Converted from MATLAB script at http://billauer.co.il/peakdet.html
Returns two arrays
function [maxtab, mintab]=peakdet(v, delta, x)
'''
maxtab = []
mintab = []
if x is None:
x = arange(len(v))
v = asarray(v)
if len(v) != len(x):
sys.exit('Input vectors v and x must have same length')
if not isscalar(delta):
sys.exit('Input argument delta must be a scalar')
if delta <= 0:
sys.exit('Input argument delta must be positive')
mn, mx = Inf, -Inf
mnpos, mxpos = NaN, NaN
lookformax = True
for i in arange(len(v)):
this = v[i]
if this > mx:
mx = this
mxpos = x[i]
if this < mn:
mn = this
mnpos = x[i]
if lookformax:
if this < mx-delta:
maxtab.append((mxpos, mx))
mn = this
mnpos = x[i]
lookformax = False
else:
if this > mn+delta:
mintab.append((mnpos, mn))
mx = this
mxpos = x[i]
lookformax = True
return array(maxtab), array(mintab)
if __name__=="__main__":
from matplotlib.pyplot import plot, scatter, show
series = [7,6,5,4,3,1,3,5,6,9,12,13,10,8,6,3,5,6,7,8,13,15,11,12,9,6,4,8,9,10,15,16,17,19,22,17,15,13,11,10,7,5,8,9,12]
maxtab, mintab = peakdet(series,.3)
y = np.linspace(0, 10, len(series))
plt.plot(y, series, '-', color='black');
# scatter(array(maxtab)[:,0], array(maxtab)[:,1], color='blue')
scatter(array(mintab)[:,0], array(mintab)[:,1], color='red')
show()
我得到这个数字:
最佳答案
尝试scipy.signal.find_peaks。要找到最小值,您可以将series
乘以-1。find_peaks
返回峰或最小值的索引。为了获得正确的绘图位置,必须使用x
的输出索引series
和find_peaks
。
如果您担心单个信号包含极小值递减的序列,则可以使用np.diff
比较连续峰的幅度。
import matplotlib.pyplot as plt
from scipy.signal import find_peaks
import numpy as np
series = np.array([7,6,5,4,3,1,3,5,6,9,12,13,10,8,6,3,5,6,7,8,13,15,11,12,9,6,4,8,9,10,15,16,17,19,22,17,15,13,11,10,7,5,8,9,12])
peaks, _ = find_peaks(series)
mins, _ =find_peaks(series*-1)
x = np.linspace(0, 10, len(series))
plt.plot(x, series, color='black');
plt.plot(x[mins], series[mins], 'x', label='mins')
plt.plot(x[peaks], series[peaks], '*', label='peaks')
plt.legend()