我希望有一个函数可以检测数组中局部最大值/最小值的位置(即使有一组局部最大值/最小值)。例子:
给定数组

test03 = np.array([2,2,10,4,4,4,5,6,7,2,6,5,5,7,7,1,1])

我希望输出如下:
set of 2 local minima => array[0]:array[1]
set of 3 local minima => array[3]:array[5]
local minima, i = 9
set of 2 local minima => array[11]:array[12]
set of 2 local minima => array[15]:array[16]

从示例中可以看到,不仅检测到奇异值,而且还检测到局部最大值/最小值集。
我知道在this question中有很多好的答案和想法,但没有一个能完成所描述的工作:其中一些简单地忽略了数组的极限点,所有的都忽略了局部极小值/极大值集。
在问这个问题之前,我自己编写了一个函数,它完全按照我上面所描述的方式执行(函数位于这个问题的末尾:local_min(a))。通过我做的测试,它工作正常)。
问题:不过,我也确信这不是使用Python的最佳方法。是否有我可以使用的内置函数、API、库等?还有其他功能建议吗?一行指令?全矢量化解决方案?
def local_min(a):
    candidate_min=0
    for i in range(len(a)):

        # Controlling the first left element
        if i==0 and len(a)>=1:
            # If the first element is a singular local minima
            if a[0]<a[1]:
                print("local minima, i = 0")
            # If the element is a candidate to be part of a set of local minima
            elif a[0]==a[1]:
                candidate_min=1
        # Controlling the last right element
        if i == (len(a)-1) and len(a)>=1:
            if candidate_min > 0:
                if a[len(a)-1]==a[len(a)-2]:
                    print("set of " + str(candidate_min+1)+ " local minima => array["+str(i-candidate_min)+"]:array["+str(i)+"]")
            if a[len(a)-1]<a[len(a)-2]:
                print("local minima, i = " + str(len(a)-1))
        # Controlling the other values in the middle of the array
        if i>0 and i<len(a)-1 and len(a)>2:
            # If a singular local minima
            if (a[i]<a[i-1] and a[i]<a[i+1]):
                print("local minima, i = " + str(i))
                # print(str(a[i-1])+" > " + str(a[i]) + " < "+str(a[i+1])) #debug
            # If it was found a set of candidate local minima
            if candidate_min >0:
                # The candidate set IS a set of local minima
                if a[i] < a[i+1]:
                    print("set of " + str(candidate_min+1)+ " local minima => array["+str(i-candidate_min)+"]:array["+str(i)+"]")
                    candidate_min = 0
                # The candidate set IS NOT a set of local minima
                elif a[i] > a[i+1]:
                    candidate_min = 0
                # The set of local minima is growing
                elif a[i] == a[i+1]:
                    candidate_min = candidate_min + 1
                # It never should arrive in the last else
                else:
                    print("Something strange happen")
                    return -1
            # If there is a set of candidate local minima (first value found)
            if (a[i]<a[i-1] and a[i]==a[i+1]):
                candidate_min = candidate_min + 1

注意:我试图用一些注释来丰富代码,以理解我想做什么。我知道我提议的功能是
不干净,只打印可以存储和返回的结果
最后。它是为举例而写的。我提出的算法应该是O(N)。
更新:
有人建议导入from scipy.signal import argrelextrema并使用如下函数:
def local_min_scipy(a):
    minima = argrelextrema(a, np.less_equal)[0]
    return minima

def local_max_scipy(a):
    minima = argrelextrema(a, np.greater_equal)[0]
    return minima

拥有这样的东西是我真正想要的。然而,当局部极小值/极大值集超过两个值时,它不能正常工作。例如:
test03 = np.array([2,2,10,4,4,4,5,6,7,2,6,5,5,7,7,1,1])

print(local_max_scipy(test03))

输出为:
[ 0  2  4  8 10 13 14 16]

当然,在test03[4]中,我有一个最小值而不是最大值。我该如何纠正这种行为?(我不知道这是不是另一个问题,或者这是问问题的正确地点。)

最佳答案

全矢量化解决方案:

test03 = np.array([2,2,10,4,4,4,5,6,7,2,6,5,5,7,7,1,1])  # Size 17
extended = np.empty(len(test03)+2)  # Rooms to manage edges, size 19
extended[1:-1] = test03
extended[0] = extended[-1] = np.inf

flag_left = extended[:-1] <= extended[1:]  # Less than successor, size 18
flag_right = extended[1:] <= extended[:-1]  # Less than predecessor, size 18

flagmini = flag_left[1:] & flag_right[:-1]  # Local minimum, size 17
mini = np.where(flagmini)[0]  # Indices of minimums
spl = np.where(np.diff(mini)>1)[0]+1  # Places to split
result = np.split(mini, spl)

result
[0, 1] [3, 4, 5] [9] [11, 12] [15, 16]

编辑
不幸的是,当它们至少有3个大项目时,也会检测到极大值,因为它们被视为平面局部极小值。一块麻木的布这样会很难看。
为了解决这个问题,我提出了另外两个解决方案,先使用numpy,然后使用numba。
whith numpy usingnp.diff
import numpy as np
test03=np.array([12,13,12,4,4,4,5,6,7,2,6,5,5,7,7,17,17])
extended=np.full(len(test03)+2,np.inf)
extended[1:-1]=test03

slope = np.sign(np.diff(extended))  # 1 if ascending,0 if flat, -1 if descending
not_flat,= slope.nonzero() # Indices where data is not flat.
local_min_inds, = np.where(np.diff(slope[not_flat])==2)

#local_min_inds contains indices in not_flat of beginning of local mins.
#Indices of End of local mins are shift by +1:
start = not_flat[local_min_inds]
stop =  not_flat[local_min_inds+1]-1

print(*zip(start,stop))
#(0, 1) (3, 5) (9, 9) (11, 12) (15, 16)

与numba加速兼容的直接解决方案:
#@numba.njit
def localmins(a):
    begin= np.empty(a.size//2+1,np.int32)
    end  = np.empty(a.size//2+1,np.int32)
    i=k=0
    begin[k]=0
    search_end=True
    while i<a.size-1:
         if a[i]>a[i+1]:
                begin[k]=i+1
                search_end=True
         if search_end and a[i]<a[i+1]:
                end[k]=i
                k+=1
                search_end=False
        i+=1
    if search_end and i>0  : # Final plate if exists
        end[k]=i
        k+=1
    return begin[:k],end[:k]

    print(*zip(*localmins(test03)))
    #(0, 1) (3, 5) (9, 9) (11, 12) (15, 16)

07-24 20:50