# -*- coding: utf-8 -*-
"""
slider 3D numpy array
"""
import numpy
import pylab
from matplotlib.widgets import Slider
data = numpy.random.rand(100,256,256) #3d-array with 100 frames 256x256
ax = pylab.subplot(111)
pylab.subplots_adjust(left=0.25, bottom=0.25)
frame = 0
l = pylab.imshow(data[frame,:,:]) #shows 256x256 image, i.e. 0th frame
axcolor = 'lightgoldenrodyellow'
axframe = pylab.axes([0.25, 0.1, 0.65, 0.03], axisbg=axcolor)
sframe = Slider(axframe, 'Frame', 0, 100, valinit=0)
def update(val):
frame = numpy.around(sframe.val)
pylab.subplot(111)
pylab.subplots_adjust(left=0.25, bottom=0.25)
pylab.imshow(data[frame,:,:])
sframe.on_changed(update)
pylab.show()
我有一个3D-numpy数组,实际上包含大小为256x256的图像。现在,我想使用滑块一个接一个地显示这些帧。它似乎真的很慢。有没有更好的方法可以做到这一点?
最佳答案
尝试将更新功能重写为
def update(val):
frame = numpy.around(sframe.val)
l.set_data(data[frame,:,:])
这样您就不必在每次更新时都重新创建所有matplotlib对象
关于python - 逐帧显示3D numpy数组,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/11563295/