我正在使用以下代码绘制某些数据的均值和方差的变化

import matplotlib.pyplot as pyplot
import numpy

vis_mv(data, ax = None):
    if ax is None: ax = pyplot.gca()
    cmap = pyplot.get_cmap()
    colors = cmap(numpy.linspace(0, 1, len(data)))

    xs = numpy.arange(len(data)) + 1
    means = numpy.array([ numpy.mean(x) for x in data ])
    varis = numpy.array([ numpy.var(x) for x in data ])
    vlim = max(1, numpy.amax(varis))

    # variance
    ax.imshow([[0.,1.],[0.,1.]],
        cmap = cmap, interpolation = 'bicubic',
        extent = (1, len(data), -vlim, vlim), aspect = 'auto'
    )
    ax.fill_between(xs, -vlim, -varis, color = 'white')
    ax.fill_between(xs, varis, vlim, color = 'white')

    # mean
    ax.plot(xs, means, color = 'white', zorder = 1)
    ax.scatter(xs, means, color = colors, edgecolor = 'white', zorder = 2)

    return ax

这工作得很好:
python - 在 matplotlib 中转换整个轴(或散点图)-LMLPHP
但现在我希望能够以垂直方式使用这种可视化,作为某种高级颜色条,在另一个情节旁边。我希望可以旋转整个轴及其所有内容,
但我只能找到 this question ,它也没有真正的答案。因此,我尝试自己做如下:
from matplotlib.transforms import Affine2D

ax = vis_mv()
r = Affine2D().rotate_deg(90) + ax.transData

for x in ax.images + ax.lines + ax.collections:
    x.set_transform(r)

old = ax.axis()
ax.axis(old[2:4] + old[0:2])

这个 几乎是 的伎俩(请注意,过去沿着白线分布的分散点是如何被炸毁的,而不是按预期旋转)。
python - 在 matplotlib 中转换整个轴(或散点图)-LMLPHP
不幸的是,保存 PathCollection 的结果的 scatter 没有按预期运行。在尝试了一些东西之后,我发现 scatter 有某种偏移变换,这似乎相当于其他集合中的常规变换。
x = numpy.arange(5)
ax = pyplot.gca()
p0, = ax.plot(x)
p1 = ax.scatter(x,x)

ax.transData == p0.get_transform()           # True
ax.transData == p1.get_offset_transform()    # True

似乎我可能想更改散点图的偏移变换,但我没有设法找到任何允许我在 PathCollection 上更改该变换的方法。此外,做我真正想做的事情会变得更加不方便。

有谁知道是否有可能改变偏移变换?

提前致谢

最佳答案

不幸的是,PathCollection 没有 .set_offset_transform() 方法,但是可以访问私有(private)的 _transOffset 属性并为其设置旋转变换。

import matplotlib.pyplot as plt
from matplotlib.transforms import Affine2D
from matplotlib.collections import PathCollection
import numpy as np; np.random.seed(3)

def vis_mv(data, ax = None):
    if ax is None: ax = plt.gca()
    cmap = plt.get_cmap()
    colors = cmap(np.linspace(0, 1, len(data)))

    xs = np.arange(len(data)) + 1
    means = np.array([ np.mean(x) for x in data ])
    varis = np.array([ np.var(x) for x in data ])
    vlim = max(1, np.amax(varis))

    # variance
    ax.imshow([[0.,1.],[0.,1.]],
        cmap = cmap, interpolation = 'bicubic',
        extent = (1, len(data), -vlim, vlim), aspect = 'auto'  )
    ax.fill_between(xs, -vlim, -varis, color = 'white')
    ax.fill_between(xs, varis, vlim, color = 'white')

    # mean
    ax.plot(xs, means, color = 'white', zorder = 1)
    ax.scatter(xs, means, color = colors, edgecolor = 'white', zorder = 2)

    return ax

data = np.random.normal(size=(9, 9))
ax  = vis_mv(data)


r = Affine2D().rotate_deg(90)

for x in ax.images + ax.lines + ax.collections:
    trans = x.get_transform()
    x.set_transform(r+trans)
    if isinstance(x, PathCollection):
        transoff = x.get_offset_transform()
        x._transOffset = r+transoff

old = ax.axis()
ax.axis(old[2:4] + old[0:2])


plt.show()

python - 在 matplotlib 中转换整个轴(或散点图)-LMLPHP

关于python - 在 matplotlib 中转换整个轴(或散点图),我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/43892973/

10-12 21:26