我试图像这样在每行数据框中获取值的所有出现:
a b c d e
1 1 1 0 -1 NA
2 0 -1 -1 1 NA
3 -1 0 NA NA 1
对此
a b c d e count.-1 count.0 count.1 count.NA
1 1 1 0 -1 NA 1 1 2 1
2 0 -1 -1 1 NA 2 1 1 1
3 1 0 NA NA 1 0 1 2 2
我目前正在这样做:
df = df %>%
by_row(
..f = function(x) {
sum(is.na(x[1:8]))
},
.to = "count_na",
.collate = "cols"
) %>%
by_row(
..f = function(x) {
sum(x[1:8] == 1, na.rm = T)
},
.to = "count_positive",
.collate = "cols"
) %>%
by_row(
..f = function(x) {
sum(x[1:8] == -1, na.rm = T)
},
.to = "count_negative",
.collate = "cols"
) %>%
by_row(
..f = function(x) {
sum(x[1:8] == 0, na.rm = T)
},
.to = "count_neutral",
.collate = "cols"
)
但是问题是,对于500万行,这需要永远完成(超过3个小时,是否有更好的方法可以做到这一点?
最佳答案
您可以使用data.table
进行快速处理。首先,将其融合为长格式,然后按行号和值制表,然后再旋转回去并合并以得到所需的输出
agg <- dcast(melt(DT[, rn:=.I], id.vars="rn")[, .N, by=.(rn, value)],
rn ~ value, sum, value.var="N")
DT[agg, on=.(rn)]
样本数据:
library(data.table)
set.seed(0L)
DT <- as.data.table(matrix(sample(c(-1L, 0L, 1L, NA_integer_), 5*5e6, replace=TRUE), ncol=5))
DT
编辑:添加了一些时间。 tl; dr使用
data.table
获得500万行数据集的大约10秒dtmtd <- function() {
agg <- dcast(melt(DT[, rn:=.I], id.vars="rn")[, .N, by=.(rn, value)],
rn ~ value, sum, value.var="N")
DT[agg, on=.(rn)]
}
microbenchmark::microbenchmark(dtmtd(), times=3L)
时间:
Unit: seconds
expr min lq mean median uq max neval
dtmtd() 10.07663 10.14351 10.17387 10.2104 10.22249 10.23458 3
关于r - R每行计数出现的速度非常慢,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/50446077/