11月2日模拟赛题解
T1 黑白图像压缩
简单模拟题 略
T2 校门外的区间
解法:
问题可以转化为线段树区间赋\(0/1\)值,区间取反操作
对于开闭区间的处理,可以转化为将每两个点中间加一个点,表示“这两个点之间的区间”的问题。
注意对于懒标记的\(pushdown\)的处理问题
代码:
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
#define maxn 70010
char ch[20], op[10];
int pos;
int add[maxn * 4], tag[maxn * 4];
void pushdown(int k, int l, int r)
{
if(tag[k] == 1)
{
if(add[k << 1] == -1) tag[k << 1] ^= 1;
else add[k << 1] ^= 1;
if(add[k << 1 | 1] == -1) tag[k << 1 | 1] ^= 1;
else add[k << 1 | 1] ^= 1;
tag[k] = 0;
}
if(add[k] == -1) return;
add[k << 1] = add[k];
add[k << 1 | 1] = add[k];
add[k] = -1;
return;
}
void modify(int k, int l, int r, int x, int y, int v)
{
if(x <= l && r <= y)
{
add[k] = v;
return;
}
pushdown(k, l, r);
int mid = (l + r) >> 1;
if(mid >= x) modify(k << 1, l, mid, x, y, v);
if(mid < y) modify(k << 1 | 1, mid + 1, r, x, y, v);
return;
}
void update(int k, int l, int r, int x, int y)
{
if(x <= l && r <= y)
{
if(add[k] == -1) tag[k] ^= 1;
else add[k] ^= 1;
return;
}
pushdown(k, l, r);
int mid = (l + r) >> 1;
if(mid >= x) update(k << 1, l, mid, x, y);
if(mid < y) update(k << 1 | 1, mid + 1, r, x, y);
return;
}
int query(int k, int l, int r, int x)
{
if(l == r)
{
if(add[k] == -1) return tag[k];
else return add[k];
}
pushdown(k, l, r);
int mid = (l + r) >> 1;
if(mid >= x) return query(k << 1, l, mid, x);
if(mid < x) return query(k << 1 | 1, mid + 1, r, x);
}
int main()
{
memset(add, -1, sizeof(add));
int l, r;
int n = 65535;
while(scanf("%s", op + 1) != EOF)
{
scanf("%s", ch + 1);
int len = strlen(ch + 1);
for(int i = 1; i <= len; i++) if(ch[i] == ',') pos = i;
l = r = 0;
for(int i = 2; i < pos; i++) l = l * 10 + ch[i] - '0';
for(int i = pos + 1; i < len; i++) r = r * 10 + ch[i] - '0';
if(ch[1] == '[') l = l * 2 + 1; else l = l * 2 + 2;
if(ch[len] == ')') r = r * 2; else r = r * 2 + 1;
if(op[1] == 'U') modify(1, 1, 2 * (n + 1), l, r, 1);
if(op[1] == 'I')
{
if(l != 1) modify(1, 1, 2 * n + 2, 1, l - 1, 0);
if(r != 2 * n + 2) modify(1, 1, 2 * n + 2, r + 1, 2 * n + 2, 0);
}
if(op[1] == 'D') modify(1, 1, 2 * n + 2, l, r, 0);
if(op[1] == 'C')
{
update(1, 1, 2 * n + 2, 1, 2 * n + 2);
if(l != 1) modify(1, 1, 2 * n + 2, 1, l - 1, 0);
if(r != 2 * n + 2) modify(1, 1, 2 * n + 2, r + 1, 2 * n + 2, 0);
}
if(op[1] == 'S')
{
update(1, 1, 2 * n + 2, l, r);
}
}
int lst = 1;
int pd = 0; int now = 0;
while(query(1, 1, 2 * n + 2, lst) == 0 && lst <= 2 * n + 1) lst++;
now = lst;
while(now <= 2 * n + 1)
{
int x = query(1, 1, n * 2 + 2, now + 1);
if(x == 0)
{
if(lst % 2 == 1)
{
printf("[%d,", lst / 2);
} else printf("(%d,", (lst - 1) / 2);
if(now % 2 == 1)
{
printf("%d]", now / 2);
} else printf("%d)", now / 2);
pd = 1; printf(" ");
lst = now + 1;
while(query(1, 1, 2 * n + 2, lst) == 0 && lst <= (n * 2 + 1)) lst++;
now = lst + 1;
}
else
{
now++;
continue;
}
}
if(!pd) printf("empty set\n");
return 0;
}