我想尝试实现附加图像的神经网络体系结构:1DCNN_model

考虑我有一个数据集X,它是(N_signals, 1500, 40),其中40是我要对其进行一维卷积的要素数量。
我的Y是(N_signals, 1500, 2),我正在使用keras
每1d卷积都需要取一个特征向量,如下图所示:1DCNN_convolution

因此,它必须获取1500个时间样本中的一个,将其传递给1d卷积层(沿时间轴滑动),然后将所有输出特征馈送到LSTM层。

我试图用这段代码实现第一个卷积部分,但是我不确定它在做什么,我无法理解它一次只能占用一个块(也许我之前需要对输入数据进行预处理?):

input_shape = (None, 40)
model_input = Input(input_shape, name = 'input')
layer = model_input
convs = []
for i in range(n_chunks):
    conv = Conv1D(filters = 40,
                  kernel_size = 10,
                  padding = 'valid',
                  activation = 'relu')(layer)
    conv = BatchNormalization(axis = 2)(conv)
    pool = MaxPooling1D(40)(conv)
    pool = Dropout(0.3)(pool)
    convs.append(pool)
out = Merge(mode = 'concat')(convs)

conv_model = Model(input = layer, output = out)

有什么建议吗?非常感谢你

最佳答案

非常感谢,我以这种方式修改了我的代码:

input_shape = (1500,40)
model_input = Input(shape=input_shape, name='input')
layer = model_input
layer = Conv1D(filters=40,
               kernel_size=10,
               padding='valid',
               activation='relu')(layer)
layer = BatchNormalization(axis=2)(layer)
layer = MaxPooling1D(pool_size=40,
                     padding='same')(layer)
layer = Dropout(self.params.drop_rate)(layer)
layer = LSTM(40, return_sequences=True,
             activation=self.params.lstm_activation)(layer)
layer = Dropout(self.params.lstm_dropout)(layer)
layer = Dense(40, activation = 'relu')(layer)
layer = BatchNormalization(axis = 2)(layer)
model_output = TimeDistributed(Dense(2,
                                     activation='sigmoid'))(layer)

我实际上是在想,也许为了使maxpooling层能够在我的40个mel特征轴上工作,我可能不得不对轴​​进行置换...

关于python - 喀拉拉邦的1d CNN音频,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/48608501/

10-12 16:42