因此,我试图创建一个堆积条形图,其中所有的图表片段将在整个程序中保持不变,但我无法找出如何让df.plot使用自定义调色板。
我想确保如果我在这个程序中做20个不同的报告,冻结将永远是,例如,蓝色和冰雹将永远是白色。
请看下面的例子-首先,我正在为所有的天气值创建一个自定义调色板。
当我使用“成对”调色板进行绘图时,它工作正常,如下所示:
这基本上就是我想要的,除了使用自定义调色板
但是,当我这样做的时候
df.plot(kind='bar', stacked=True,colormap=pal_weather)
我得到一个错误的结尾是:
C:\Anaconda3\lib\site-packages\pandas\tools\plotting.py in _get_standard_colors(num_colors, colormap, color_type, color)
157 if colormap is None:
158 raise ValueError("Colormap {0} is not recognized".format(cmap))
--> 159 colors = lmap(colormap, np.linspace(0, 1, num=num_colors))
160 elif color is not None:
161 if colormap is not None:
C:\Anaconda3\lib\site-packages\pandas\compat\__init__.py in lmap(*args, **kwargs)
116
117 def lmap(*args, **kwargs):
--> 118 return list(map(*args, **kwargs))
119
120 def lfilter(*args, **kwargs):
TypeError: 'dict' object is not callable
任何帮助都会大吃一惊
谢谢您!
示例代码如下:
weather=('Day','Freeze', 'Wind', 'Flood', 'Quake', 'Hail')
pal_weather = dict(zip(weather, sns.color_palette("cubehelix", n_colors=len(weather))))
data1 = [[ "M", 66386, 174296, 75131, 577908, 32015],
[ "T", 58230, 381139, 78045, 99308, 160454],
[ "W", 89135, 80552, 152558, 497981, 603535],
[ "T", 78415, 81858, 150656, 193263, 69638],
[ "F", 139361, 331509, 343164, 781380, 52269]]
df = DataFrame(data=data1)
df.columns = ('Day','Freeze', 'Wind', 'Flood', 'Quake', 'Hail')
df.plot(kind='bar', stacked=True,colormap='Paired')
最佳答案
尝试我的解决方案:
import matplotlib.pyplot as plt
import matplotlib
import seaborn as sns
from matplotlib.colors import LinearSegmentedColormap
matplotlib.style.use('ggplot')
from pandas import DataFrame
weather = ('Day', 'Freeze', 'Wind', 'Flood', 'Quake', 'Hail')
colors = sns.color_palette("cubehelix", n_colors=len(weather))
cmap1 = LinearSegmentedColormap.from_list("my_colormap", colors)
data1 = [["M", 66386, 174296, 75131, 577908, 32015],
["T", 58230, 381139, 78045, 99308, 160454],
["W", 89135, 80552, 152558, 497981, 603535],
["T", 78415, 81858, 150656, 193263, 69638],
["F", 139361, 331509, 343164, 781380, 52269]]
df = DataFrame(data=data1)
df.columns = weather
df = df.set_index('Day')
df.plot(kind='bar', stacked=True, colormap=cmap1)
plt.show()
输出: