Closed. This question does not meet Stack Overflow guidelines。它当前不接受答案。
想改善这个问题吗?更新问题,以便将其作为on-topic用于堆栈溢出。
5年前关闭。
Improve this question
我知道
我想看看用来计算它的实际实现代码。
但是,作为
因此,通过找到适当的
想改善这个问题吗?更新问题,以便将其作为on-topic用于堆栈溢出。
5年前关闭。
Improve this question
我知道
Math.sqrt
称为StrictMath.sqrt(double a)
。StrictMath
类中的方法签名:public static native double sqrt(double a);
我想看看用来计算它的实际实现代码。
最佳答案
安装JDK时,可以在src.zip
中找到标准库的源代码。但是,这对于StrictMath
不会有帮助,因为StrictMath.sqrt(double)
的实现方式如下:
public static native double sqrt(double a);
因此,它实际上只是一个本地调用,可能由Java在不同平台上以不同方式实现。但是,作为
StrictMath
的文档指出:因此,通过找到适当的
fdlibm
源代码版本,您还应该找到Java使用的确切实现(并由此处的规范要求)。fdlibm
使用的实现是static const double one = 1.0, tiny=1.0e-300;
double z;
int sign = (int) 0x80000000;
unsigned r, t1, s1, ix1, q1;
int ix0, s0, q, m, t, i;
ix0 = __HI(x); /* high word of x */
ix1 = __LO(x); /* low word of x */
/* take care of Inf and NaN */
if ((ix0 & 0x7ff00000) == 0x7ff00000) {
return x*x+x; /* sqrt(NaN) = NaN,
sqrt(+inf) = +inf,
sqrt(-inf) = sNaN */
}
/* take care of zero */
if (ix0 <= 0) {
if (((ix0&(~sign)) | ix1) == 0) {
return x; /* sqrt(+-0) = +-0 */
} else if (ix0 < 0) {
return (x-x) / (x-x); /* sqrt(-ve) = sNaN */
}
}
/* normalize x */
m = (ix0 >> 20);
if (m == 0) { /* subnormal x */
while (ix0==0) {
m -= 21;
ix0 |= (ix1 >> 11); ix1 <<= 21;
}
for (i=0; (ix0&0x00100000)==0; i++) {
ix0 <<= 1;
}
m -= i-1;
ix0 |= (ix1 >> (32-i));
ix1 <<= i;
}
m -= 1023; /* unbias exponent */
ix0 = (ix0&0x000fffff)|0x00100000;
if (m&1) { /* odd m, double x to make it even */
ix0 += ix0 + ((ix1&sign) >> 31);
ix1 += ix1;
}
m >>= 1; /* m = [m/2] */
/* generate sqrt(x) bit by bit */
ix0 += ix0 + ((ix1 & sign)>>31);
ix1 += ix1;
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
r = 0x00200000; /* r = moving bit from right to left */
while (r != 0) {
t = s0 + r;
if (t <= ix0) {
s0 = t+r;
ix0 -= t;
q += r;
}
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
r>>=1;
}
r = sign;
while (r != 0) {
t1 = s1+r;
t = s0;
if ((t<ix0) || ((t == ix0) && (t1 <= ix1))) {
s1 = t1+r;
if (((t1&sign) == sign) && (s1 & sign) == 0) {
s0 += 1;
}
ix0 -= t;
if (ix1 < t1) {
ix0 -= 1;
}
ix1 -= t1;
q1 += r;
}
ix0 += ix0 + ((ix1&sign) >> 31);
ix1 += ix1;
r >>= 1;
}
/* use floating add to find out rounding direction */
if((ix0 | ix1) != 0) {
z = one - tiny; /* trigger inexact flag */
if (z >= one) {
z = one+tiny;
if (q1 == (unsigned) 0xffffffff) {
q1=0;
q += 1;
}
} else if (z > one) {
if (q1 == (unsigned) 0xfffffffe) {
q+=1;
}
q1+=2;
} else
q1 += (q1&1);
}
}
ix0 = (q>>1) + 0x3fe00000;
ix1 = q 1>> 1;
if ((q&1) == 1) ix1 |= sign;
ix0 += (m <<20);
__HI(z) = ix0;
__LO(z) = ix1;
return z;
10-07 15:56