我试图弄清楚如何正确实现循环平铺。我的代码基于http://people.freebsd.org/~lstewart/articles/cpumemory.pdf。从理论上讲,我应该使用分块矩阵乘法来获得性能提升。但我不一定。我还将介绍valgrind的cachegrind的结果,我认为这非常有趣。
我评论了不同的方法。
// cpp program, matrix multiplication
// returns the elapsed time of the loop iterations measured by omp_get_wtime()
#include <iostream>
#include <algorithm> // std::min
#include <omp.h>
int main(int argc, char *argv[])
{
// matrix dimensions
const int row = 1000;
const int col = 1000;
// matrix stored as an array of size 1000*1000
// temp will be b transposed, recommendation from the article mentioned above
// res is of double precision, I ran into errors displaying the data when using a different data type
int *a = new int[row*col];
int *b = new int[row*col];
int *temp = new int[row*col];
double *res = new double[row*col];
// initialization
for(int i = 0; i < row; ++i){
for (int j = 0; j < col; ++j) {
a[i*col+j] = i*col+j;
b[i*col+j] = i*col+j;
}
}
// transposition of b
for(int i = 0; i < row; ++i){
for (int j = 0; j < col; ++j) {
temp[i*col+j] = b[j*col+i];
}
}
int i,j,k,x,y,z;
// "naive" matrix multiplication
// double start = omp_get_wtime();
// for (i = 0; i < row; ++i) {
// for (j = 0; j < col; ++j) {
// for (k = 0; k < row; ++k) {
// res[ i * col + j ] += a[ i * col + k ] * b[ k * col + j ];
// }
// }
// }
// double end = omp_get_wtime();
// std::cout << end-start << std::endl;
// "transposed" matrix multiplication
// for (i = 0; i < row; ++i) {
// for (j = 0; j < col; ++j) {
// for (k = 0; k < row; ++k) {
// res[ i * col + j ] += a[ i * col + k ] * temp[ k + j * col ];
// }
// }
// }
// tiled (parallel) matrix multiplication
// from /sys/devices/system/cpu/cpu0/cache/index0
// cat coherency_line_size returns 64;
// thus I will use 64 as the blocking size;
int incr = 64;
for (i = 0; i < row; i += incr) {
for (j = 0; j < col; j += incr) {
res[i*col+j] = 0.0;
for (k = 0; k < row; k += incr) {
for (x = i; x < std::min( i + incr, row ); x++) {
for (y = j; y < std::min( j + incr, col ); y++) {
for (z = k; z < std::min( k + incr, row ); z++) {
res[ x * col + y ] += a[ x * col + z ] * b[ z * col + y ];
}
}
}
}
}
}
return 0;
}
结果:
现在,我介绍在具有Intel Dual Core和4Gb DRAM的Linux机器上编译这三种方法的结果。首先,我将介绍未经优化的编译结果,然后是经过优化的编译结果。对于每个结果,将添加各自的valgrinds cachegrind结果。对于那些不熟悉该软件的人:http://www.valgrind.org/docs/manual/cg-manual.html
“天真”方法:
$ g++ -fopenmp parallel -o parallel.cpp
$ ./parallel
16.5305
$ valgrind --tool=cachegrind ./parallel
==12558== I refs: 39,054,659,801
==12558== I1 misses: 1,758
==12558== LLi misses: 1,738
==12558== I1 miss rate: 0.00%
==12558== LLi miss rate: 0.00%
==12558==
==12558== D refs: 20,028,690,508 (18,024,512,540 rd + 2,004,177,968 wr)
==12558== D1 misses: 1,064,759,236 ( 1,064,571,085 rd + 188,151 wr)
==12558== LLd misses: 62,877,799 ( 62,689,774 rd + 188,025 wr)
==12558== D1 miss rate: 5.3% ( 5.9% + 0.0% )
==12558== LLd miss rate: 0.3% ( 0.3% + 0.0% )
==12558==
==12558== LL refs: 1,064,760,994 ( 1,064,572,843 rd + 188,151 wr)
==12558== LL misses: 62,879,537 ( 62,691,512 rd + 188,025 wr)
==12558== LL miss rate: 0.1% ( 0.1% + 0.0% )
“转置”方法:
$ g++ -fopenmp parallel -o parallel.cpp
$ ./parallel
9.40104
$ valgrind --tool=cachegrind ./parallel
==13319== I refs: 39,054,659,804
==13319== I1 misses: 1,759
==13319== LLi misses: 1,739
==13319== I1 miss rate: 0.00%
==13319== LLi miss rate: 0.00%
==13319==
==13319== D refs: 20,028,690,508 (18,024,512,539 rd + 2,004,177,969 wr)
==13319== D1 misses: 63,823,736 ( 63,635,585 rd + 188,151 wr)
==13319== LLd misses: 62,877,799 ( 62,689,774 rd + 188,025 wr)
==13319== D1 miss rate: 0.3% ( 0.3% + 0.0% )
==13319== LLd miss rate: 0.3% ( 0.3% + 0.0% )
==13319==
==13319== LL refs: 63,825,495 ( 63,637,344 rd + 188,151 wr)
==13319== LL misses: 62,879,538 ( 62,691,513 rd + 188,025 wr)
==13319== LL miss rate: 0.1% ( 0.1% + 0.0% )
“平铺”方法:
$ g++ -fopenmp parallel -o parallel.cpp
$ ./parallel
13.4941
==13872== I refs: 62,967,276,691
==13872== I1 misses: 1,768
==13872== LLi misses: 1,747
==13872== I1 miss rate: 0.00%
==13872== LLi miss rate: 0.00%
==13872==
==13872== D refs: 35,593,733,973 (28,411,716,118 rd + 7,182,017,855 wr)
==13872== D1 misses: 6,724,892 ( 6,536,740 rd + 188,152 wr)
==13872== LLd misses: 1,377,799 ( 1,189,774 rd + 188,025 wr)
==13872== D1 miss rate: 0.0% ( 0.0% + 0.0% )
==13872== LLd miss rate: 0.0% ( 0.0% + 0.0% )
==13872==
==13872== LL refs: 6,726,660 ( 6,538,508 rd + 188,152 wr)
==13872== LL misses: 1,379,546 ( 1,191,521 rd + 188,025 wr)
==13872== LL miss rate: 0.0% ( 0.0% + 0.0% )
注意引用。已经大大提高了。
优化的编译:
“天真”方法:
$ g++ -fopenmp -O3 parallel -o parallel.cpp
$ ./parallel
4.87246
$ valgrind --tool=cachegrind ./parallel
==11227== I refs: 9,021,661,364
==11227== I1 misses: 1,756
==11227== LLi misses: 1,734
==11227== I1 miss rate: 0.00%
==11227== LLi miss rate: 0.00%
==11227==
==11227== D refs: 4,008,681,781 (3,004,505,045 rd + 1,004,176,736 wr)
==11227== D1 misses: 1,065,760,232 (1,064,572,078 rd + 1,188,154 wr)
==11227== LLd misses: 62,877,794 ( 62,689,768 rd + 188,026 wr)
==11227== D1 miss rate: 26.5% ( 35.4% + 0.1% )
==11227== LLd miss rate: 1.5% ( 2.0% + 0.0% )
==11227==
==11227== LL refs: 1,065,761,988 (1,064,573,834 rd + 1,188,154 wr)
==11227== LL misses: 62,879,528 ( 62,691,502 rd + 188,026 wr)
==11227== LL miss rate: 0.4% ( 0.5% + 0.0% )
“转置”方法:
$ g++ -fopenmp -O3 parallel -o parallel.cpp
$ ./parallel
2.02121
$ valgrind --tool=cachegrind ./parallel
==12076== I refs: 8,020,662,317
==12076== I1 misses: 1,753
==12076== LLi misses: 1,731
==12076== I1 miss rate: 0.00%
==12076== LLi miss rate: 0.00%
==12076==
==12076== D refs: 4,006,682,757 (3,002,508,030 rd + 1,004,174,727 wr)
==12076== D1 misses: 63,823,733 ( 63,635,579 rd + 188,154 wr)
==12076== LLd misses: 62,877,795 ( 62,689,769 rd + 188,026 wr)
==12076== D1 miss rate: 1.5% ( 2.1% + 0.0% )
==12076== LLd miss rate: 1.5% ( 2.0% + 0.0% )
==12076==
==12076== LL refs: 63,825,486 ( 63,637,332 rd + 188,154 wr)
==12076== LL misses: 62,879,526 ( 62,691,500 rd + 188,026 wr)
==12076== LL miss rate: 0.5% ( 0.5% + 0.0% )
“平铺”方法:
$ g++ -fopenmp -O3 parallel -o parallel.cpp
$ ./parallel
1.78285
$ valgrind --tool=cachegrind ./parallel
==14365== I refs: 8,192,794,606
==14365== I1 misses: 1,753
==14365== LLi misses: 1,732
==14365== I1 miss rate: 0.00%
==14365== LLi miss rate: 0.00%
==14365==
==14365== D refs: 4,102,512,450 (3,083,324,326 rd + 1,019,188,124 wr)
==14365== D1 misses: 6,597,429 ( 6,409,277 rd + 188,152 wr)
==14365== LLd misses: 1,377,797 ( 1,189,770 rd + 188,027 wr)
==14365== D1 miss rate: 0.1% ( 0.2% + 0.0% )
==14365== LLd miss rate: 0.0% ( 0.0% + 0.0% )
==14365==
==14365== LL refs: 6,599,182 ( 6,411,030 rd + 188,152 wr)
==14365== LL misses: 1,379,529 ( 1,191,502 rd + 188,027 wr)
==14365== LL miss rate: 0.0% ( 0.0% + 0.0% )
我的问题是:为什么未优化的“平铺”方法比优化的方法表现得相对较差?我对 slice 算法的实现有问题吗?
我的意思是,这显然是两种方法的缓存丢失率近似。同样,裁判。 (获取的数量)已从60 bio +降至8 bio。因此,毫不奇怪,它现在速度更快。但是对我来说,不明显的是那20条生物+附加指令来自何处?这应该是这三个未优化的实现中最快的实现,对吗?
好吧,谢谢你很多次。
体重
文森特
最佳答案
您的平铺方法在代码方面更加复杂,因此会产生额外的开销。当然,有了优化的代码,这不是什么大问题,因为矩阵足够大,可以通过适当的缓存使用产生更多的好处。
现在查看未优化的代码:
for (z = k; z < std::min( k + incr, row ); z++) {
-------------------------
这些计算将在紧密循环中执行。那是一个完美的性能杀手。
将它们移到外部范围(例如:只要
k
可用)就会有很大的不同。当然,优化器可以执行此操作,但前提是您要求优化它。这就是测量未优化代码通常一文不值的原因。0m16.186s "tiled" approach
0m11.543s "tiled" approach with the hand optimization
0m10.919s "transposed" approach
这是我在机器上测得的值。对我来说看起来不错。
关于c++ - valgrind的图块矩阵乘法的C++性能分析,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/26892504/