groupRectangle函数实现矩形框聚合。原因:多尺度检测后,获取的矩形之间会存在重合、重叠和包含关系。因尺度缩放,可能导致同一个目标在多个尺度上被检测出来,故有必要进行融合。OpenCV中实现的融合有两种:1)按权重合并;2)使用Meanshift算法进行合并。
下面是简单的合并,其直接按照位置和大小关系进行合并。
其实现主要为:1)多所有矩形按照大小位置合并成不同的类别;
2)将同类别中的矩形合并成一个矩形,当不满足给出阈值条件时,矩形被舍弃,否则留下。
void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps, std::vector<int>* weights, std::vector<double>* levelWeights) { if( groupThreshold <= 0 || rectList.empty() ) { if( weights ) { size_t i, sz = rectList.size(); weights->resize(sz); for( i = 0; i < sz; i++ ) (*weights)[i] = 1; } return; } std::vector<int> labels; // 调用partition函数,将所有的矩形框初步分为几类,其中labels为每个矩形框对应的类别编号,eps为判断两个矩形框是否属于 // 同一类的控制参数。如果两个矩形框的四个相应顶点的差值的绝对值都在deta范围内,则认为属于同一类,否则是不同类。 int nclasses = partition(rectList, labels, SimilarRects(eps)); std::vector<Rect> rrects(nclasses); std::vector<int> rweights(nclasses, 0); std::vector<int> rejectLevels(nclasses, 0); std::vector<double> rejectWeights(nclasses, DBL_MIN); int i, j, nlabels = (int)labels.size(); for( i = 0; i < nlabels; i++ ) { int cls = labels[i]; rrects[cls].x += rectList[i].x; rrects[cls].y += rectList[i].y; rrects[cls].width += rectList[i].width; rrects[cls].height += rectList[i].height; rweights[cls]++; } bool useDefaultWeights = false; if ( levelWeights && weights && !weights->empty() && !levelWeights->empty() ) { for( i = 0; i < nlabels; i++ ) { int cls = labels[i]; if( (*weights)[i] > rejectLevels[cls] ) { rejectLevels[cls] = (*weights)[i]; rejectWeights[cls] = (*levelWeights)[i]; } else if( ( (*weights)[i] == rejectLevels[cls] ) && ( (*levelWeights)[i] > rejectWeights[cls] ) ) rejectWeights[cls] = (*levelWeights)[i]; } } else useDefaultWeights = true; // 计算每一类别的平均矩形框位置,即每一个类别最终对应一个矩形框 for( i = 0; i < nclasses; i++ ) { Rect r = rrects[i]; float s = 1.f/rweights[i]; rrects[i] = Rect(saturate_cast<int>(r.x*s), saturate_cast<int>(r.y*s), saturate_cast<int>(r.width*s), saturate_cast<int>(r.height*s)); } rectList.clear(); if( weights ) weights->clear(); if( levelWeights ) levelWeights->clear(); // 再次过滤上面分类中得到的所有矩形框 for( i = 0; i < nclasses; i++ ) { Rect r1 = rrects[i]; int n1 = rweights[i]; double w1 = rejectWeights[i]; int l1 = rejectLevels[i]; // filter out rectangles which don't have enough similar rectangles // 将每一类别中矩形框个数较少的类别过滤掉。 if( n1 <= groupThreshold ) continue; // filter out small face rectangles inside large rectangles // 将嵌在大矩形框内部的小矩形框过滤掉。最后剩下的矩形框为聚类的结果。 for( j = 0; j < nclasses; j++ ) { int n2 = rweights[j]; if( j == i || n2 <= groupThreshold ) continue; Rect r2 = rrects[j]; int dx = saturate_cast<int>( r2.width * eps ); int dy = saturate_cast<int>( r2.height * eps ); if( i != j && r1.x >= r2.x - dx && r1.y >= r2.y - dy && r1.x + r1.width <= r2.x + r2.width + dx && r1.y + r1.height <= r2.y + r2.height + dy && (n2 > std::max(3, n1) || n1 < 3) ) break; } if( j == nclasses ) { rectList.push_back(r1); if( weights ) weights->push_back(useDefaultWeights ? n1 : l1); if( levelWeights ) levelWeights->push_back(w1); } } }