我正在尝试创建一个线性网络图,使用与下面的概念类似的Python
(最好是与matplotlib
和networkx
一起使用)。
如何有效地构造该图?在python中使用我想在更复杂的例子中使用这个,所以我觉得硬编码这个简单例子的位置是没有用的:(。bokeh
是否有解决方案?
pos (dictionary, optional) – A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions.
我还没有看到任何关于如何在pos
中实现这一点的教程,这就是为什么我相信这个问题将是社区的可靠资源。我已经广泛地阅读了networkx
tutorials并且上面没有类似的内容。networkx
的布局会使这种类型的网络在没有仔细使用networkx
参数的情况下无法解释…我相信这是我唯一的选择。https://networkx.github.io/documentation/networkx-1.9/reference/drawing.html文档中的所有预计算布局似乎都不能很好地处理这种类型的网络结构。
简单示例:
(a)每个外键都是图中从左向右的迭代(例如,迭代0代表样本,迭代1有1-3组,与迭代2相同,迭代3有1-2组等)。(b)内部字典包含特定迭代时的当前分组,并且表示当前组的先前组合并的权重(例如,networkx
hasnetworkx
andpos
and foriteration 3
all ofGroup 1
Group 2
has go intoiteration 4
iteration 3's
butGroup 2
iteration 4's
has split up.权重之和始终为1。
上面绘图的连接重量代码:
D_iter_current_previous = {
1: {
"Group 1":{"sample_0":0.5, "sample_1":0.5, "sample_2":0, "sample_3":0, "sample_4":0},
"Group 2":{"sample_0":0, "sample_1":0, "sample_2":1, "sample_3":0, "sample_4":0},
"Group 3":{"sample_0":0, "sample_1":0, "sample_2":0, "sample_3":0.5, "sample_4":0.5}
},
2: {
"Group 1":{"Group 1":1, "Group 2":0, "Group 3":0},
"Group 2":{"Group 1":0, "Group 2":1, "Group 3":0},
"Group 3":{"Group 1":0, "Group 2":0, "Group 3":1}
},
3: {
"Group 1":{"Group 1":0.25, "Group 2":0, "Group 3":0.75},
"Group 2":{"Group 1":0.25, "Group 2":0.75, "Group 3":0}
},
4: {
"Group 1":{"Group 1":1, "Group 2":0},
"Group 2":{"Group 1":0.25, "Group 2":0.75}
}
}
这就是我在中绘制图表时发生的情况:
import networkx
import matplotlib.pyplot as plt
# Create Directed Graph
G = nx.DiGraph()
# Iterate through all connections
for iter_n, D_current_previous in D_iter_current_previous.items():
for current_group, D_previous_weights in D_current_previous.items():
for previous_group, weight in D_previous_weights.items():
if weight > 0:
# Define connections using `|__|` as a delimiter for the names
previous_node = "%d|__|%s"%(iter_n - 1, previous_group)
current_node = "%d|__|%s"%(iter_n, current_group)
connection = (previous_node, current_node)
G.add_edge(*connection, weight=weight)
# Draw Graph with labels and width thickness
nx.draw(G, with_labels=True, width=[G[u][v]['weight'] for u,v in G.edges()])
注意:我唯一能想到的另一种方法是在
Group 2
中创建一个散点图,每个刻度代表一个迭代(5包括初始样本),然后用不同的权重将这些点相互连接。这将是一些相当混乱的代码,尤其是试图将标记的边缘与连接对齐……但是,我不确定这和iteration 3's
是否是最好的方法,或者是否有为这种类型的绘图设计的工具(例如Group 1
或networkx
)。 最佳答案
NetworkX有很好的勘探数据绘图工具
分析,它不是制作出版质量数据的工具,
因为各种原因,我不想进入这里。因此我
从头重写代码基的那部分,并生成
可以找到名为netgraph的独立绘图模块
here(就像原始的完全基于matplotlib)。API是
非常、非常相似并且有很好的文档记录,所以不应该太
很难达到你的目的。
在此基础上,我得到了以下结果:
我选择颜色来表示边缘强度
1)表示负值,以及
2)更好地区分小值。
但是,也可以将边宽度传递给netgraph(请参见)。
分支的不同顺序是数据结构(dict)的结果,它表示没有固有的顺序。您必须修改您的数据结构和下面的函数来解决这个问题。
代码:
import itertools
import numpy as np
import matplotlib.pyplot as plt
import netgraph; reload(netgraph)
def plot_layered_network(weight_matrices,
distance_between_layers=2,
distance_between_nodes=1,
layer_labels=None,
**kwargs):
"""
Convenience function to plot layered network.
Arguments:
----------
weight_matrices: [w1, w2, ..., wn]
list of weight matrices defining the connectivity between layers;
each weight matrix is a 2-D ndarray with rows indexing source and columns indexing targets;
the number of sources has to match the number of targets in the last layer
distance_between_layers: int
distance_between_nodes: int
layer_labels: [str1, str2, ..., strn+1]
labels of layers
**kwargs: passed to netgraph.draw()
Returns:
--------
ax: matplotlib axis instance
"""
nodes_per_layer = _get_nodes_per_layer(weight_matrices)
node_positions = _get_node_positions(nodes_per_layer,
distance_between_layers,
distance_between_nodes)
w = _combine_weight_matrices(weight_matrices, nodes_per_layer)
ax = netgraph.draw(w, node_positions, **kwargs)
if not layer_labels is None:
ax.set_xticks(distance_between_layers*np.arange(len(weight_matrices)+1))
ax.set_xticklabels(layer_labels)
ax.xaxis.set_ticks_position('bottom')
return ax
def _get_nodes_per_layer(weight_matrices):
nodes_per_layer = []
for w in weight_matrices:
sources, targets = w.shape
nodes_per_layer.append(sources)
nodes_per_layer.append(targets)
return nodes_per_layer
def _get_node_positions(nodes_per_layer,
distance_between_layers,
distance_between_nodes):
x = []
y = []
for ii, n in enumerate(nodes_per_layer):
x.append(distance_between_nodes * np.arange(0., n))
y.append(ii * distance_between_layers * np.ones((n)))
x = np.concatenate(x)
y = np.concatenate(y)
return np.c_[y,x]
def _combine_weight_matrices(weight_matrices, nodes_per_layer):
total_nodes = np.sum(nodes_per_layer)
w = np.full((total_nodes, total_nodes), np.nan, np.float)
a = 0
b = nodes_per_layer[0]
for ii, ww in enumerate(weight_matrices):
w[a:a+ww.shape[0], b:b+ww.shape[1]] = ww
a += nodes_per_layer[ii]
b += nodes_per_layer[ii+1]
return w
def test():
w1 = np.random.rand(4,5) #< 0.50
w2 = np.random.rand(5,6) #< 0.25
w3 = np.random.rand(6,3) #< 0.75
import string
node_labels = dict(zip(range(18), list(string.ascii_lowercase)))
fig, ax = plt.subplots(1,1)
plot_layered_network([w1,w2,w3],
layer_labels=['start', 'step 1', 'step 2', 'finish'],
ax=ax,
node_size=20,
node_edge_width=2,
node_labels=node_labels,
edge_width=5,
)
plt.show()
return
def test_example(input_dict):
weight_matrices, node_labels = _parse_input(input_dict)
fig, ax = plt.subplots(1,1)
plot_layered_network(weight_matrices,
layer_labels=['', '1', '2', '3', '4'],
distance_between_layers=10,
distance_between_nodes=8,
ax=ax,
node_size=300,
node_edge_width=10,
node_labels=node_labels,
edge_width=50,
)
plt.show()
return
def _parse_input(input_dict):
weight_matrices = []
node_labels = []
# initialise sources
sources = set()
for v in input_dict[1].values():
for s in v.keys():
sources.add(s)
sources = list(sources)
for ii in range(len(input_dict)):
inner_dict = input_dict[ii+1]
targets = inner_dict.keys()
w = np.full((len(sources), len(targets)), np.nan, np.float)
for ii, s in enumerate(sources):
for jj, t in enumerate(targets):
try:
w[ii,jj] = inner_dict[t][s]
except KeyError:
pass
weight_matrices.append(w)
node_labels.append(sources)
sources = targets
node_labels.append(targets)
node_labels = list(itertools.chain.from_iterable(node_labels))
node_labels = dict(enumerate(node_labels))
return weight_matrices, node_labels
# --------------------------------------------------------------------------------
# script
# --------------------------------------------------------------------------------
if __name__ == "__main__":
# test()
input_dict = {
1: {
"Group 1":{"sample_0":0.5, "sample_1":0.5, "sample_2":0, "sample_3":0, "sample_4":0},
"Group 2":{"sample_0":0, "sample_1":0, "sample_2":1, "sample_3":0, "sample_4":0},
"Group 3":{"sample_0":0, "sample_1":0, "sample_2":0, "sample_3":0.5, "sample_4":0.5}
},
2: {
"Group 1":{"Group 1":1, "Group 2":0, "Group 3":0},
"Group 2":{"Group 1":0, "Group 2":1, "Group 3":0},
"Group 3":{"Group 1":0, "Group 2":0, "Group 3":1}
},
3: {
"Group 1":{"Group 1":0.25, "Group 2":0, "Group 3":0.75},
"Group 2":{"Group 1":0.25, "Group 2":0.75, "Group 3":0}
},
4: {
"Group 1":{"Group 1":1, "Group 2":0},
"Group 2":{"Group 1":0.25, "Group 2":0.75}
}
}
test_example(input_dict)
pass
关于python - 如何使用`networkx`中的`pos`参数创建流程图风格的Graph? (Python 3),我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/39801880/