我一直在研究这三个,并在下面说明了他们的推论。有人可以告诉我我是否足够正确地理解它们?谢谢。

  • Dijkstra的算法仅在您只有一个来源并且想知道从一个节点到另一个节点的最小路径时使用,但是在像this
  • 这样的情况下会失败
    当所有节点中的任何一个都可以作为源时,将使用
  • Floyd-Warshall算法,因此您希望从任何源节点到达任何目标节点的最短距离。仅当出现负循环
  • 时,此操作才会失败

    (这是最重要的一个。我的意思是,这是我最不确定的一个:)

    3,贝尔曼·福特(Bellman-Ford)和迪杰斯特拉(Dijkstra)一样,只有一个来源。这可以处理负的权重,的工作方式与Floyd-Warshall的相同,除了一个来源,对吗?

    如果需要看一下,相应的算法是(由维基百科提供):

    贝尔曼福特:
     procedure BellmanFord(list vertices, list edges, vertex source)
       // This implementation takes in a graph, represented as lists of vertices
       // and edges, and modifies the vertices so that their distance and
       // predecessor attributes store the shortest paths.
    
       // Step 1: initialize graph
       for each vertex v in vertices:
           if v is source then v.distance := 0
           else v.distance := infinity
           v.predecessor := null
    
       // Step 2: relax edges repeatedly
       for i from 1 to size(vertices)-1:
           for each edge uv in edges: // uv is the edge from u to v
               u := uv.source
               v := uv.destination
               if u.distance + uv.weight < v.distance:
                   v.distance := u.distance + uv.weight
                   v.predecessor := u
    
       // Step 3: check for negative-weight cycles
       for each edge uv in edges:
           u := uv.source
           v := uv.destination
           if u.distance + uv.weight < v.distance:
               error "Graph contains a negative-weight cycle"
    

    Dijkstra:
     1  function Dijkstra(Graph, source):
     2      for each vertex v in Graph:                                // Initializations
     3          dist[v] := infinity ;                                  // Unknown distance function from
     4                                                                 // source to v
     5          previous[v] := undefined ;                             // Previous node in optimal path
     6                                                                 // from source
     7
     8      dist[source] := 0 ;                                        // Distance from source to source
     9      Q := the set of all nodes in Graph ;                       // All nodes in the graph are
    10                                                                 // unoptimized - thus are in Q
    11      while Q is not empty:                                      // The main loop
    12          u := vertex in Q with smallest distance in dist[] ;    // Start node in first case
    13          if dist[u] = infinity:
    14              break ;                                            // all remaining vertices are
    15                                                                 // inaccessible from source
    16
    17          remove u from Q ;
    18          for each neighbor v of u:                              // where v has not yet been
    19                                                                                 removed from Q.
    20              alt := dist[u] + dist_between(u, v) ;
    21              if alt < dist[v]:                                  // Relax (u,v,a)
    22                  dist[v] := alt ;
    23                  previous[v] := u ;
    24                  decrease-key v in Q;                           // Reorder v in the Queue
    25      return dist;
    

    弗洛伊德·沃希尔(Floyd-Warshall):
     1 /* Assume a function edgeCost(i,j) which returns the cost of the edge from i to j
     2    (infinity if there is none).
     3    Also assume that n is the number of vertices and edgeCost(i,i) = 0
     4 */
     5
     6 int path[][];
     7 /* A 2-dimensional matrix. At each step in the algorithm, path[i][j] is the shortest path
     8    from i to j using intermediate vertices (1..k−1).  Each path[i][j] is initialized to
     9    edgeCost(i,j).
    10 */
    11
    12 procedure FloydWarshall ()
    13    for k := 1 to n
    14       for i := 1 to n
    15          for j := 1 to n
    16             path[i][j] = min ( path[i][j], path[i][k]+path[k][j] );
    

    最佳答案

    您对前两个问题以及Floyd-Warshall的目标(找到所有对之间的最短路径)是正确的,但对于Bellman-Ford和Floyd-Warshall之间的关系却不正确:两种算法都使用动态编程来找到最短的路径,但FW与从每个起始节点到每个其他节点运行BF并不相同。

    在BF中,问题是:从源到目标的最短路径是最多k个步骤,运行时间为O(EV)。如果我们将其运行到其他节点,则运行时间将为O(EV ^ 2)。

    在FW中,问题是:对于所有节点i,j,k,从i到j到k的最短路径是什么。这导致O(V ^ 3)的运行时间-对于每个起始节点,其运行时间均优于BF(对于密集图,其运行时间高达| V |)。

    关于负循环/权重的另一点注意:Dijkstra可能根本无法给出正确的结果。 BF和FW不会失败-它们会正确指出没有最小重量路径,因为负重量是无穷大的。

    08-19 10:31