谁是斯科特?

问题

尝试使用seaborn将“贷款预测”数据集中的“教育”属性添加到对图中时,出现以下错误:



我已经查看了原始数据,但是在任何地方都找不到“scott”,所以我的问题是它来自何处,如何解决?

我也收到运行时错误“RuntimeError:选定的KDE带宽为0。无法估计密度。”。我不确定这是由第一个错误引起的,还是完全是另一个问题。如果有人可以对此发出任何光芒,我将不胜感激。

数据集

我正在使用here找到的贷款预测数据集。属性如下:

    Loan_ID     Gender  Married     Dependents  Education     Self_Employed     ApplicantIncome     CoapplicantIncome   LoanAmount  Loan_Amount_Term    Credit_History  Property_Area   Loan_Status
0   LP001002    Male    No          0           Graduate      No                5849                0.0                 NaN         360.0               1.0             Urban           Y
1   LP001003    Male    Yes         1           Graduate      No                4583                1508.0              128.0       360.0               1.0             Rural           N
2   LP001005    Male    Yes         0           Graduate      Yes               3000                0.0                 66.0        360.0               1.0             Urban           Y
3   LP001006    Male    Yes         0           Not Graduate  No                2583                2358.0              120.0       360.0               1.0             Urban           Y
4   LP001008    Male    No          0           Graduate      No                6000                0.0                 141.0       360.0               1.0             Urban           Y


import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline # I'm using ipython notebook

train_data = pd.read_csv("train_ctrUa4K.csv")

bad_credit = train_data[train_data["Credit_History"] == 0]
bad_credit["Education"] = bad_credit["Education"].map({"Graduate":1,"Not Graduate":0})
sns.pairplot(bad_credit,vars=["ApplicantIncome","Education","LoanAmount"],hue="Loan_Status")

错误
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
~/anaconda3/lib/python3.7/site-packages/statsmodels/nonparametric/kde.py in kdensityfft(X, kernel, bw, weights, gridsize, adjust, clip, cut, retgrid)
    450     try:
--> 451         bw = float(bw)
    452     except:

ValueError: could not convert string to float: 'scott'

During handling of the above exception, another exception occurred:

RuntimeError                              Traceback (most recent call last)
<ipython-input-25-0cd48ab0d803> in <module>
      2 bad_credit = train_data[train_data["Credit_History"] == 0]
      3 bad_credit["Education"] = bad_credit["Education"].map({"Graduate":1,"Not Graduate":0})
----> 4 sns.pairplot(bad_credit,vars=["ApplicantIncome","Education","LoanAmount"],hue="Loan_Status")

~/anaconda3/lib/python3.7/site-packages/seaborn/axisgrid.py in pairplot(data, hue, hue_order, palette, vars, x_vars, y_vars, kind, diag_kind, markers, height, aspect, corner, dropna, plot_kws, diag_kws, grid_kws, size)
   2119             diag_kws.setdefault("shade", True)
   2120             diag_kws["legend"] = False
-> 2121             grid.map_diag(kdeplot, **diag_kws)
   2122
   2123     # Maybe plot on the off-diagonals

~/anaconda3/lib/python3.7/site-packages/seaborn/axisgrid.py in map_diag(self, func, **kwargs)
   1488                     data_k = utils.remove_na(data_k)
   1489
-> 1490                 func(data_k, label=label_k, color=color, **kwargs)
   1491
   1492             self._clean_axis(ax)

~/anaconda3/lib/python3.7/site-packages/seaborn/distributions.py in kdeplot(data, data2, shade, vertical, kernel, bw, gridsize, cut, clip, legend, cumulative, shade_lowest, cbar, cbar_ax, cbar_kws, ax, **kwargs)
    703         ax = _univariate_kdeplot(data, shade, vertical, kernel, bw,
    704                                  gridsize, cut, clip, legend, ax,
--> 705                                  cumulative=cumulative, **kwargs)
    706
    707     return ax

~/anaconda3/lib/python3.7/site-packages/seaborn/distributions.py in _univariate_kdeplot(data, shade, vertical, kernel, bw, gridsize, cut, clip, legend, ax, cumulative, **kwargs)
    293         x, y = _statsmodels_univariate_kde(data, kernel, bw,
    294                                            gridsize, cut, clip,
--> 295                                            cumulative=cumulative)
    296     else:
    297         # Fall back to scipy if missing statsmodels

~/anaconda3/lib/python3.7/site-packages/seaborn/distributions.py in _statsmodels_univariate_kde(data, kernel, bw, gridsize, cut, clip, cumulative)
    365     fft = kernel == "gau"
    366     kde = smnp.KDEUnivariate(data)
--> 367     kde.fit(kernel, bw, fft, gridsize=gridsize, cut=cut, clip=clip)
    368     if cumulative:
    369         grid, y = kde.support, kde.cdf

~/anaconda3/lib/python3.7/site-packages/statsmodels/nonparametric/kde.py in fit(self, kernel, bw, fft, weights, gridsize, adjust, cut, clip)
    138             density, grid, bw = kdensityfft(endog, kernel=kernel, bw=bw,
    139                     adjust=adjust, weights=weights, gridsize=gridsize,
--> 140                     clip=clip, cut=cut)
    141         else:
    142             density, grid, bw = kdensity(endog, kernel=kernel, bw=bw,

~/anaconda3/lib/python3.7/site-packages/statsmodels/nonparametric/kde.py in kdensityfft(X, kernel, bw, weights, gridsize, adjust, clip, cut, retgrid)
    451         bw = float(bw)
    452     except:
--> 453         bw = bandwidths.select_bandwidth(X, bw, kern) # will cross-val fit this pattern?
    454     bw *= adjust
    455

~/anaconda3/lib/python3.7/site-packages/statsmodels/nonparametric/bandwidths.py in select_bandwidth(x, bw, kernel)
    172         # eventually this can fall back on another selection criterion.
    173         err = "Selected KDE bandwidth is 0. Cannot estiamte density."
--> 174         raise RuntimeError(err)
    175     else:
    176         return bandwidth

RuntimeError: Selected KDE bandwidth is 0. Cannot estiamte density.


最佳答案

scott是在绘制内核密度估计(KDE)时选择带宽的方法的名称。它以DW Scott(1)的名字命名。

我看不到您的数据,但我的猜测是,对于某个色调级别,一对变量之一对某些变量很奇怪,从而阻止seaborn计算正确的带宽。

您可以使用diag_kws将参数传递给 sns.kdeplot() ,pairplot使用它来在对角线上绘制单变量分布。

例如:

sns.pairplot(..., diag_kws={'bw':'silverman'})

会迫使sns.kdeplot()使用“silverman”方法选择带宽,在您的情况下,该方法可能比Scott方法更好?

(1)D.W.斯科特,“多元密度估计:理论,实践和可视化”,约翰·威利父子出版社,纽约,切斯特,1992年。

编辑

要尝试查明罪魁祸首,您必须使用PairGrid而不是pairplot()PairGrid允许您使用自定义函数绘制对角线。如果在该函数中包含打印语句,则可以看到将传递到sns.kdeplot()的数据是什么。执行应该在数据“不正确”的地方停止,您也许可以弄清楚该怎么做。

例如:
def test_func(*data, **kwargs):
    print("data received:", data)
    print("hue name + other params:", kwargs)
    sns.kdeplot(*data, **kwargs)

iris = sns.load_dataset('iris')
g = sns.PairGrid(iris, hue="species")
g = g.map_diag(test_func)

对于每个变量(列)和每个水平,您将获得如下所示的输出:
data received: (array([5.1, 4.9, 4.7, 4.6, 5. , 5.4, 4.6, 5. , 4.4, 4.9, 5.4, 4.8, 4.8,
       4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5. ,
       5. , 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5. , 5.5, 4.9, 4.4,
       5.1, 5. , 4.5, 4.4, 5. , 5.1, 4.8, 5.1, 4.6, 5.3, 5. ]),)
hue name + other params: {'label': 'setosa', 'color': (0.12156862745098039, 0.4666666666666667, 0.7058823529411765)}
data received: (array([7. , 6.4, 6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5. , 5.9, 6. ,
       6.1, 5.6, 6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6,
       6.8, 6.7, 6. , 5.7, 5.5, 5.5, 5.8, 6. , 5.4, 6. , 6.7, 6.3, 5.6,
       5.5, 5.5, 6.1, 5.8, 5. , 5.6, 5.7, 5.7, 6.2, 5.1, 5.7]),)
hue name + other params: {'label': 'versicolor', 'color': (1.0, 0.4980392156862745, 0.054901960784313725)}
(...)

09-18 19:08