我目前正在使用C编写一个基本的光线跟踪程序,我已经成功地制作了一些简单的形状,例如sphere/box/plane/cone/…,我还使用phong照明对它们进行了一些着色。
但我的问题是,我可以掌握如何用射线追踪一个半球,比如有一个定义半球的集合方程,如果因为我找不到它而启发我,或者有一个集合方法来做它,而我却不知道。
我也试过用一个平面来切割球体,只显示上半部分,但没有成功(我对这一切还不熟悉,所以我的理解可能是错误的)。
编辑:好的,我很抱歉,因为我对这一切都很陌生,但这是我所尝试的。
#include "raytacing.h"
t_env *init_sphere(t_env *e)
{
//sphere position and radius
e->sph.posi.x = 0;
e->sph.posi.y = 0;
e->sph.posi.z = -1;
e->sph.rad = 0;
e->sph.color = (t_color){255, 255, 128);
return (e);
}
t_env *init_plane(t_env *e)
{
//plane position
e->plane.posi.x = 0;
e->olane.posi.y = -0.5;
e->plane.posi.z = 0;
//plane normal
e->plane.norm.x = 0;
e->olane.norm.y = 1;
e->plane.norm.z = 0;
e->plane.color = (t_color){0, 255, 0);
return (e);
}
double inter_plane(t_env *e, double *t) //calculating plane intersection
{
t_vect dist;
double norm;
norm = dot(e->plane.normal, e->r.direction);
if (fabs(norm) > 1e-6)
{
dist = vect_sub(e->plane.posi, e->r.start);
e->t0 = dot(dist, e->plane.normal) / norm;
if (e->t0 < *t && e->t0 > 1e-6)
{
*t = e->t0;
return (1);
}
else
return (0);
}
return (0);
}
double inter_sph(t_env *e, double *t) //calculating sphere intersection
{
double delta;
double sqrtd;
t_vect dist;
e->a = dot(e->r.direction, e->r.direction);
dist = vect_sub(e->r.start, e->sph.posi);
e->b = 2 * dot(dist, e->r.direction);
e->c = dot(dist, dist) - e->sph.rad * e->sph.rad;
delta = e->b * e->b - 4 * e->a * e->c;
if (delta < 0)
return (0);
sqrtd = sqrt(delta);
e->t0 = (-e->b + sqrtd) / (2 * e->a);
e->t1 = (-e->b - sqrtd) / (2 * e->a);
if (e->t0 > e->t1)
e->t0 = e->t1;
if ((e->t0 > 1e-6) && (e->t0 < *t))
{
*t = e->t0;
return (1);
}
else
return (0);
}
double inter_hemisphere(t_env *e) //calculating hemisphere intersection
{
t_vect hit_normal;
if (inter_sph(e, &e->t) == 1)
{
hit_normal = vect_add(e->r.start, vect_scalaire(e->t, e->r.direction));
hit_normal = vect_normalize(hit_normal);
if (inter_plane(e, &(e->t)) == 1)
{
if (dot(e->plane.normal, hit_normal) < 0)
return (1);
return (0);
}
}
return (0);
}
e->t
是。应该是离相机最近的距离,这样我就能准确地显示出近距离和远距离的物体在这里,我尝试应用
Spektre
所说的,并显示了一些东西,看起来像这样:当我试着旋转它的时候,我得到了这个:
Edit2:在使用
Spektre
方法之后,我得到了一个半球的函数交集,这个交集看起来像这样。double inter_hemisphere(t_env *e, double *t)
{
double delta;
double sqrtd;
t_vect dist;
e->a = dot(e->r.direction, e->r.direction);
dist = vect_sub(e->r.start, e->sph.posi);
e->b = 2 * dot(dist, e->r.direction);
e->c = dot(dist, dist) - e->sph.rad * e->sph.rad;
delta = e->b * e->b - 4 * e->a * e->c;
if (delta < 0)
return (0);
sqrtd = sqrt(delta);
e->t0 = (-e->b + sqrtd) / (2 * e->a);
e->t1 = (-e->b - sqrtd) / (2 * e->a);
t_vect v2;
v2 = vect_add(e->r.start, vect_sub(vect_scalaire(e->t0, e->r.direction), e->sph.posi));
if (dot(e->plane.normal, v2) > 0.0)
e->t0 =-1.0;
v2 = vect_add(e->r.start, vect_sub(vect_scalaire(e->t1, e->r.direction), e->sph.posi));
if (dot(e->plane.normal, v2) > 0.0)
e->t1 =-1.0;
if (e->t0 < 0.0)
e->t0 = e->t1;
if (e->t1 < 0.0)
e->t1 = e->t0;
double tt;
tt = fmin(e->t0, e->t1);
if (tt <= 0.0)
tt = fmax(e->t0, e->t1);
if (tt > 1e-6 && tt < e->t)
{
*t = tt;
return (1);
}
return (0);
}
这里是Result!!
最佳答案
最简单的方法是用平面切割球体。
如果平面法向比任何方向(球体上的点-球体中心)具有与法向相同的方向将被截断。简单地说就是这个条件:
dot(point on sphere - sphere center , plane normal ) > 0.0
但不要忘记测试光线和球体的交点,因为最接近的交点可以在平面的另一边。。。
我试着把这个应用到我的GLSL射线跟踪器中:
Reflection and refraction impossible without recursive ray tracing?
并提出这个更新的片段着色器:
顶点(不变):
//------------------------------------------------------------------
#version 420 core
//------------------------------------------------------------------
uniform float aspect;
uniform float focal_length;
uniform mat4x4 tm_eye;
layout(location=0) in vec2 pos;
out smooth vec2 txt_pos; // frag position on screen <-1,+1> for debug prints
out smooth vec3 ray_pos; // ray start position
out smooth vec3 ray_dir; // ray start direction
//------------------------------------------------------------------
void main(void)
{
vec4 p;
txt_pos=pos;
// perspective projection
p=tm_eye*vec4(pos.x/aspect,pos.y,0.0,1.0);
ray_pos=p.xyz;
p-=tm_eye*vec4(0.0,0.0,-focal_length,1.0);
ray_dir=normalize(p.xyz);
gl_Position=vec4(pos,0.0,1.0);
}
//------------------------------------------------------------------
碎片(添加半球):
//------------------------------------------------------------------
#version 420 core
//------------------------------------------------------------------
// Ray tracer ver: 1.000
//------------------------------------------------------------------
in smooth vec3 ray_pos; // ray start position
in smooth vec3 ray_dir; // ray start direction
uniform float n0; // refractive index of camera origin
uniform int fac_siz; // square texture x,y resolution size
uniform int fac_num; // number of valid floats in texture
uniform sampler2D fac_txr; // scene mesh data texture
out layout(location=0) vec4 frag_col;
//---------------------------------------------------------------------------
#define _reflect
#define _refract
//---------------------------------------------------------------------------
void main(void)
{
const vec3 light_dir=normalize(vec3(0.1,0.1,1.0));
const float light_iamb=0.1; // dot offset
const float light_idir=0.5; // directional light amplitude
const vec3 back_col=vec3(0.2,0.2,0.2); // background color
const float _zero=1e-6; // to avoid intrsection with start point of ray
const int _fac_triangles =0; // r,g,b,a, n, triangle count, { x0,y0,z0,x1,y1,z1,x2,y2,z2 }
const int _fac_spheres =1; // r,g,b,a, n, sphere count, { x,y,z,r }
const int _fac_hemispheres=2; // r,g,b,a, n, hemisphere count,{ x,y,z,r,nx,ny,nz }
// ray scene intersection
struct _ray
{
dvec3 pos,dir,nor;
vec3 col;
float refl,refr;// reflection,refraction intensity coeficients
float n0,n1; // refaction index (start,end)
double l; // ray length
int lvl,i0,i1; // recursion level, reflect, refract
};
const int _lvls=4;
const int _rays=(1<<_lvls)-1;
_ray ray[_rays]; int rays;
dvec3 v0,v1,v2,pos;
vec3 c;
float refr,refl,n1;
double tt,t,a;
int i0,ii,num,id;
// fac texture access
vec2 st; int i,j; float ds=1.0/float(fac_siz-1);
#define fac_get texture(fac_txr,st).r; st.s+=ds; i++; j++; if (j==fac_siz) { j=0; st.s=0.0; st.t+=ds; }
// enque start ray
ray[0].pos=ray_pos;
ray[0].dir=normalize(ray_dir);
ray[0].nor=vec3(0.0,0.0,0.0);
ray[0].refl=0.0;
ray[0].refr=0.0;
ray[0].n0=n0;
ray[0].n1=1.0;
ray[0].l =0.0;
ray[0].lvl=0;
ray[0].i0=-1;
ray[0].i1=-1;
rays=1;
// loop all enqued rays
for (i0=0;i0<rays;i0++)
{
// loop through all objects
// find closest forward intersection between them and ray[i0]
// strore it to ray[i0].(nor,col)
// strore it to pos,n1
t=tt=-1.0; ii=1; ray[i0].l=0.0;
ray[i0].col=back_col;
pos=ray[i0].pos; n1=n0;
for (st=vec2(0.0,0.0),i=j=0;i<fac_num;)
{
c.r=fac_get; // RGBA
c.g=fac_get;
c.b=fac_get;
refl=fac_get;
refr=fac_get;
n1=fac_get; // refraction index
a=fac_get; id=int(a); // object type
a=fac_get; num=int(a); // face count
if (id==_fac_triangles)
for (;num>0;num--)
{
v0.x=fac_get; v0.y=fac_get; v0.z=fac_get;
v1.x=fac_get; v1.y=fac_get; v1.z=fac_get;
v2.x=fac_get; v2.y=fac_get; v2.z=fac_get;
dvec3 e1,e2,n,p,q,r;
double t,u,v,det,idet;
//compute ray triangle intersection
e1=v1-v0;
e2=v2-v0;
// Calculate planes normal vector
p=cross(ray[i0].dir,e2);
det=dot(e1,p);
// Ray is parallel to plane
if (abs(det)<1e-8) continue;
idet=1.0/det;
r=ray[i0].pos-v0;
u=dot(r,p)*idet;
if ((u<0.0)||(u>1.0)) continue;
q=cross(r,e1);
v=dot(ray[i0].dir,q)*idet;
if ((v<0.0)||(u+v>1.0)) continue;
t=dot(e2,q)*idet;
if ((t>_zero)&&((t<=tt)||(ii!=0)))
{
ii=0; tt=t;
// store color,n ...
ray[i0].col=c;
ray[i0].refl=refl;
ray[i0].refr=refr;
// barycentric interpolate position
t=1.0-u-v;
pos=(v0*t)+(v1*u)+(v2*v);
// compute normal (store as dir for now)
e1=v1-v0;
e2=v2-v1;
ray[i0].nor=cross(e1,e2);
}
}
if (id==_fac_spheres)
for (;num>0;num--)
{
float r;
v0.x=fac_get; v0.y=fac_get; v0.z=fac_get; r=fac_get;
// compute l0 length of ray(p0,dp) to intersection with sphere(v0,r)
// where rr= r^-2
double aa,bb,cc,dd,l0,l1,rr;
dvec3 p0,dp;
p0=ray[i0].pos-v0; // set sphere center to (0,0,0)
dp=ray[i0].dir;
rr = 1.0/(r*r);
aa=2.0*rr*dot(dp,dp);
bb=2.0*rr*dot(p0,dp);
cc= rr*dot(p0,p0)-1.0;
dd=((bb*bb)-(2.0*aa*cc));
if (dd<0.0) continue;
dd=sqrt(dd);
l0=(-bb+dd)/aa;
l1=(-bb-dd)/aa;
if (l0<0.0) l0=l1;
if (l1<0.0) l1=l0;
t=min(l0,l1); if (t<=_zero) t=max(l0,l1);
if ((t>_zero)&&((t<=tt)||(ii!=0)))
{
ii=0; tt=t;
// store color,n ...
ray[i0].col=c;
ray[i0].refl=refl;
ray[i0].refr=refr;
// position,normal
pos=ray[i0].pos+(ray[i0].dir*t);
ray[i0].nor=pos-v0;
}
}
if (id==_fac_hemispheres)
for (;num>0;num--)
{
float r;
v0.x=fac_get; v0.y=fac_get; v0.z=fac_get; r=fac_get;
v1.x=fac_get; v1.y=fac_get; v1.z=fac_get;
// compute l0 length of ray(p0,dp) to intersection with sphere(v0,r)
// where rr= r^-2
double aa,bb,cc,dd,l0,l1,rr;
dvec3 p0,dp;
p0=ray[i0].pos-v0; // set sphere center to (0,0,0)
dp=ray[i0].dir;
rr = 1.0/(r*r);
aa=2.0*rr*dot(dp,dp);
bb=2.0*rr*dot(p0,dp);
cc= rr*dot(p0,p0)-1.0;
dd=((bb*bb)-(2.0*aa*cc));
if (dd<0.0) continue;
dd=sqrt(dd);
l0=(-bb+dd)/aa;
l1=(-bb-dd)/aa;
// test both hits-v0 against normal v1
v2=ray[i0].pos+(ray[i0].dir*l0)-v0; if (dot(v1,v2)>0.0) l0=-1.0;
v2=ray[i0].pos+(ray[i0].dir*l1)-v0; if (dot(v1,v2)>0.0) l1=-1.0;
if (l0<0.0) l0=l1;
if (l1<0.0) l1=l0;
t=min(l0,l1); if (t<=_zero) t=max(l0,l1);
if ((t>_zero)&&((t<=tt)||(ii!=0)))
{
ii=0; tt=t;
// store color,n ...
ray[i0].col=c;
ray[i0].refl=refl;
ray[i0].refr=refr;
// position,normal
pos=ray[i0].pos+(ray[i0].dir*t);
ray[i0].nor=pos-v0;
}
}
}
ray[i0].l=tt;
ray[i0].nor=normalize(ray[i0].nor);
// split ray from pos and ray[i0].nor
if ((ii==0)&&(ray[i0].lvl<_lvls-1))
{
t=dot(ray[i0].dir,ray[i0].nor);
// reflect
#ifdef _reflect
if ((ray[i0].refl>_zero)&&(t<_zero)) // do not reflect inside objects
{
ray[i0].i0=rays;
ray[rays]=ray[i0];
ray[rays].lvl++;
ray[rays].i0=-1;
ray[rays].i1=-1;
ray[rays].pos=pos;
ray[rays].dir=ray[rays].dir-(2.0*t*ray[rays].nor);
ray[rays].n0=ray[i0].n0;
ray[rays].n1=ray[i0].n0;
rays++;
}
#endif
// refract
#ifdef _refract
if (ray[i0].refr>_zero)
{
ray[i0].i1=rays;
ray[rays]=ray[i0];
ray[rays].lvl++;
ray[rays].i0=-1;
ray[rays].i1=-1;
ray[rays].pos=pos;
t=dot(ray[i0].dir,ray[i0].nor);
if (t>0.0) // exit object
{
ray[rays].n0=ray[i0].n0;
ray[rays].n1=n0;
if (i0==0) ray[i0].n1=n1;
v0=-ray[i0].nor; t=-t;
}
else{ // enter object
ray[rays].n0=n1;
ray[rays].n1=ray[i0].n0;
ray[i0 ].n1=n1;
v0=ray[i0].nor;
}
n1=ray[i0].n0/ray[i0].n1;
tt=1.0-(n1*n1*(1.0-t*t));
if (tt>=0.0)
{
ray[rays].dir=(ray[i0].dir*n1)-(v0*((n1*t)+sqrt(tt)));
rays++;
}
}
#endif
}
else if (i0>0) // ignore last ray if nothing hit
{
ray[i0]=ray[rays-1];
rays--; i0--;
}
}
// back track ray intersections and compute output color col
// lvl is sorted ascending so backtrack from end
for (i0=rays-1;i0>=0;i0--)
{
// directional + ambient light
t=abs(dot(ray[i0].nor,light_dir)*light_idir)+light_iamb;
t*=1.0-ray[i0].refl-ray[i0].refr;
ray[i0].col.rgb*=float(t);
// reflect
ii=ray[i0].i0;
if (ii>=0) ray[i0].col.rgb+=ray[ii].col.rgb*ray[i0].refl;
// refract
ii=ray[i0].i1;
if (ii>=0) ray[i0].col.rgb+=ray[ii].col.rgb*ray[i0].refr;
}
frag_col=vec4(ray[0].col,1.0);
}
//---------------------------------------------------------------------------
顶点着色器只创建由GPU插值的光线位置和方向,然后片段着色器处理每个光线(每像素)。
我用这个场景:
// init mesh raytracer
ray.gl_init();
ray.beg();
// r g b rfl rfr n
ray.add_material(1.0,0.7,0.1,0.3,0.0,_n_glass); ray.add_hemisphere( 0.0, 0.0, 2.0,0.5, 0.0, 0.0, 1.0);
ray.add_material(1.0,1.0,1.0,0.3,0.0,_n_glass); ray.add_box ( 0.0, 0.0, 6.0,9.0,9.0,0.1);
ray.add_material(1.0,1.0,1.0,0.1,0.8,_n_glass); ray.add_sphere ( 0.0, 0.0, 0.5,0.5);
ray.add_material(1.0,0.1,0.1,0.3,0.0,_n_glass); ray.add_sphere (+2.0, 0.0, 2.0,0.5);
ray.add_material(0.1,1.0,0.1,0.3,0.0,_n_glass); ray.add_box (-2.0, 0.0, 2.0,0.5,0.5,0.5);
ray.add_material(0.1,0.1,1.0,0.3,0.0,_n_glass);
ray.add_tetrahedron
(
0.0, 0.0, 3.0,
-1.0,-1.0, 4.0,
+1.0,-1.0, 4.0,
0.0,+1.0, 4.0
);
ray.end();
包括半径
(0.0, 0.0, 2.0)
且平面法r=0.5
的单个黄色半球。旋转物体可以通过简单地旋转平面法向来完成。这是预览:
正如你所看到的,半球只是用一个平面切割。。。上面的唯一重要代码是(请参见
(0.0, 0.0, 1.0)
注释):if (id==_fac_hemispheres) // *** ignore
for (;num>0;num--) // *** ignore
{
float r;
// *** here v0 is center, v1 is plane normal and r is radius
v0.x=fac_get; v0.y=fac_get; v0.z=fac_get; r=fac_get;
v1.x=fac_get; v1.y=fac_get; v1.z=fac_get;
// *** this is ray/ellipsoid intersection returning l0,l1 ray distances for both hits
// compute l0 length of ray(p0,dp) to intersection with sphere(v0,r)
// where rr= r^-2
double aa,bb,cc,dd,l0,l1,rr;
dvec3 p0,dp;
p0=ray[i0].pos-v0; // set sphere center to (0,0,0)
dp=ray[i0].dir;
rr = 1.0/(r*r);
aa=2.0*rr*dot(dp,dp);
bb=2.0*rr*dot(p0,dp);
cc= rr*dot(p0,p0)-1.0;
dd=((bb*bb)-(2.0*aa*cc));
if (dd<0.0) continue;
dd=sqrt(dd);
l0=(-bb+dd)/aa;
l1=(-bb-dd)/aa;
// *** this thro away hits on wrong side of plane
// test both hits-v0 against normal v1
v2=ray[i0].pos+(ray[i0].dir*l0)-v0; if (dot(v1,v2)>0.0) l0=-1.0;
v2=ray[i0].pos+(ray[i0].dir*l1)-v0; if (dot(v1,v2)>0.0) l1=-1.0;
// *** this is just using closer valid hit
if (l0<0.0) l0=l1;
if (l1<0.0) l1=l0;
t=min(l0,l1); if (t<=_zero) t=max(l0,l1);
if ((t>_zero)&&((t<=tt)||(ii!=0)))
{
ii=0; tt=t;
// store color,n ...
ray[i0].col=c;
ray[i0].refl=refl;
ray[i0].refr=refr;
// position,normal
pos=ray[i0].pos+(ray[i0].dir*t);
ray[i0].nor=pos-v0;
}
}
我用了我的ray and ellipsoid intersection accuracy improvement因为它返回两个点击,而不仅仅是第一个。
如果你交叉检查球体和半球,你会看到我刚刚添加了这两行:
v2=ray[i0].pos+(ray[i0].dir*l0)-v0; if (dot(v1,v2)>0.0) l0=-1.0;
v2=ray[i0].pos+(ray[i0].dir*l1)-v0; if (dot(v1,v2)>0.0) l1=-1.0;
它只是把射线距离转换成命中位置并计算出上面提到的条件。。。
关于c - 射线追踪半球,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/57134950/