Possible Duplicate:
Project Euler Problem 12 - C++




我试图获得第一个三角形数超过400的除数(三角形数,例如:1、3、6、10)。例如,三角形6具有四个除数1,2,3,6。以下是我尝试获得400除数的三角形数的尝试

import java.math.BigInteger;

public class IQ3
{

        static int num1 = 1;
        static int devideResult = 0;

    public static void main(String[]args)
    {


        while(true)
        {
            int triangle = num1*(num1+1)/2;

            if(devide(triangle))
            {
                break;
            }

            num1++;
        }

    }

    static boolean devide(int num)
    {
        boolean result = false;
        int devideCounter = 2;


        for(int i=1;i<=num/2;i++)
            {
                if(num%i == 0)
                {
                    devideCounter++;
                    System.out.println("Devide Counter: "+devideCounter);
                    //System.out.println("i number: "+i);
                    //System.out.println("input number: "+num);

                    if(devideCounter>400)
                    {
                        System.out.println("Number: "+num);
                        result = true;
                        break;
                    }
                }
            }

        return result;
    }
}


但这需要花费大量时间,有时甚至会崩溃。

但是,由于答案可能确实很大,因此我想到了使用BigInteger。

import java.math.BigInteger;

public class IQ2P2
{

        static BigInteger num1 = new BigInteger("1");
        static BigInteger two = new BigInteger("2");
        static BigInteger one = new BigInteger("1");
        static BigInteger i = new BigInteger("1");
        static BigInteger zero = new BigInteger("0");


        static int devideResult = 0;
    //    static int devideCounter = 0;

    public static void main(String[]args)
    {


        while(true)
        {
            BigInteger triangle = num1.multiply(num1.add(one)).divide(two);

            if(devide(triangle))
            {
                break;
            }

            num1.add(one);
        }

    }

    static boolean devide(BigInteger num)
    {
        boolean result = false;
        int devideCounter = 2;


        while((i.compareTo(num))<(num.divide(two).intValue()))
            {
                if(num.remainder(i) == zero)
                {
                    devideCounter++;
                    System.out.println("Devide Counter: "+devideCounter);
                    //System.out.println("i number: "+i);
                    //System.out.println("input number: "+num);

                    if(devideCounter>400)
                    {
                        System.out.println("Number: "+num);
                        result = true;
                        break;
                    }
                }
                i.add(one);
            }

        return result;
    }
}


但是biginteger从未返回任何东西。

请帮助我获得第400个除数的三角形数。

注意:这不是家庭作业。我不是学生。

以下是对答案的回应

import java.math.BigInteger;

public class IQ2
{

        static long num1 = 1;
        static long numberToAdd = 0;
        static long devideResult = 0;


       static   long triangleNum = 1;
    static long incrementer = 2;
    //    static int devideCounter = 0;

    public static void main(String[]args)
    {


        while(true)
        {
            triangleNum += incrementer++;

            if(devide(triangleNum))
            {
                break;
            }

            num1++;
        }

    }

    static boolean devide(long num)
    {
        boolean result = false;
        int devideCounter = 2;


        for(long i=1;i<=num/2;i++)
            {
                if(num%i == 0)
                {
                    devideCounter++;
                    System.out.println("Devide Counter: "+devideCounter);
                    //System.out.println("i number: "+i);
                    //System.out.println("input number: "+num);

                    if(devideCounter>400)
                    {
                        System.out.println("Number: "+num);
                        result = true;
                        break;
                    }
                }
            }

        return result;
    }
}

最佳答案

您需要优化找出给定数量的除数的方式。首先,对于每个d <= sqrt(n)这样的n%d==0,都有m=n/d这样的n%m==0m >= sqrt(n)。这意味着您可以一次计数它们,并在sqrt(n)处停止。

但是真正的优化是改为计算数字的prime factorization,然后从那里找出amount of divisors

10-01 03:02
查看更多