介绍
对于dijkstra
算法,很多人可能感觉熟悉而又陌生,可能大部分人比较了解bfs和dfs
,而对dijkstra和floyd算法可能知道大概是图论中的某个算法,但是可能不清楚其中的作用和原理,又或许,你曾经感觉它很难,那么,这个时候正适合你重新认识它。
Dijkstra能是干啥的?
就拿上图来说,假如直到的路径和长度已知,那么可以使用dijkstra
算法计算南京到图中所有节点的最短距离。
单源什么意思?
- 从一个顶点出发,Dijkstra算法只能求一个顶点到其他点的最短距离而不能任意两点。
和bfs
求的最短路径有什么区别?
bfs
求的与其说是路径,不如说是次数。因为bfs他是按照队列一次一次进行加入相邻的点,而两点之间没有权值或者权值相等(代价相同)。处理的更多是偏向迷宫类的这种都是只能走邻居(不排除特例)。
Dijkstra在处理具体实例的应用还是很多的,因为具体的问题其实带权更多一些。
算法分析
对于一个算法,首先要理解它的运行流程。
对于一个Dijkstra算法而言,前提是它的前提条件和环境:
- 一个连通图,若干节点,节点可能有数值,但是
路径
一定有权值
。并且路径不能为负。否则Dijkstra就不适用。
Dijkstra的核心思想是贪心算法的思想。不懂贪心?
对于贪心算法,在很多情况都能用到。下面举几个不恰当的例子!
不难发现上面的策略
虽然没有很强的理论数学依据,或者不太好说明。但是事实规律就是那样,并且对于贪心问题大部分都需要排序,还可能会遇到类排序。并且一个物体可能有多个属性,不同问题需要按照不同属性进行排序,操作。
那么我们的Dijkstra
是如何贪心的呢?对于一个点,求图中所有点的最短路径,如果没有正确的方法胡乱想确实很难算出来,并且如果暴力匹配复杂度呈指数级上升不适合解决实际问题。
那么我们该怎么想呢?
Dijkstra算法的前提:
- 首先,Dijkstra处理的是带正权值的
有权图
,那么,就需要一个二维数组(如果空间大用list数组)存储各个点到达(边
)的权值大小。(邻接矩阵或者邻接表存储) - 其次,还需要一个boolean数组判断那些点已经确定最短长度,那些点没有确定。int数组记录距离(在算法执行过程可能被多次更新)。
- 需要优先队列加入已经确定点的周围点。每次抛出确定最短路径的那个并且确定最短,直到所有点路径确定最短为止。
简单的概括流程为:
- 一般从选定点开始抛入优先队列。(路径一般为0),
boolean数组
标记0的位置(最短为0) , 然后0周围连通的点
抛入优先队列中(可能是node类),并把各个点的距离记录到对应数组内(如果小于就更新,大于就不动,初始第一次是无穷肯定会更新),第一次就结束了 - 从队列中抛出
距离最近
的那个点B
(第一次就是0周围邻居)。这个点距离一定是最近的(所有权值都是正的,点的距离只能越来越长。)标记这个点为true
,并且将这个点的邻居加入队列(下一次确定的最短点在前面未确定和这个点邻居中产生),并更新通过B
点计算各个位置的长度,如果小于则更新! - 重复二的操作,直到所有点都确定。
算法实现
package 图论;
import java.util.ArrayDeque;
import java.util.Comparator;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Scanner;
public class dijkstra {
static class node
{
int x; //节点编号
int lenth;//长度
public node(int x,int lenth) {
this.x=x;
this.lenth=lenth;
}
}
public static void main(String[] args) {
int[][] map = new int[6][6];//记录权值,顺便记录链接情况,可以考虑附加邻接表
initmap(map);//初始化
boolean bool[]=new boolean[6];//判断是否已经确定
int len[]=new int[6];//长度
for(int i=0;i<6;i++)
{
len[i]=Integer.MAX_VALUE;
}
Queue<node>q1=new PriorityQueue<node>(com);
len[0]=0;//从0这个点开始
q1.add(new node(0, 0));
int count=0;//计算执行了几次dijkstra
while (!q1.isEmpty()) {
node t1=q1.poll();
int index=t1.x;//节点编号
int length=t1.lenth;//节点当前点距离
bool[index]=true;//抛出的点确定
count++;//其实执行了6次就可以确定就不需要继续执行了 这句可有可无,有了减少计算次数
for(int i=0;i<map[index].length;i++)
{
if(map[index][i]>0&&!bool[i])
{
node node=new node(i, length+map[index][i]);
if(len[i]>node.lenth)//需要更新节点的时候更新节点并加入队列
{
len[i]=node.lenth;
q1.add(node);
}
}
}
}
for(int i=0;i<6;i++)
{
System.out.println(len[i]);
}
}
static Comparator<node>com=new Comparator<node>() {
public int compare(node o1, node o2) {
return o1.lenth-o2.lenth;
}
};
private static void initmap(int[][] map) {
map[0][1]=2;map[0][2]=3;map[0][3]=6;
map[1][0]=2;map[1][4]=4;map[1][5]=6;
map[2][0]=3;map[2][3]=2;
map[3][0]=6;map[3][2]=2;map[3][4]=1;map[3][5]=3;
map[4][1]=4;map[4][3]=1;
map[5][1]=6;map[5][3]=3;
}
}
执行结果:
当然,dijkstra算法比较灵活,实现方式也可能有点区别,但是思想是不变的:一个贪心思路。dijkstra执行一次就能够确定一个点,所以只需要执行点的总和次数即可完成整个算法。
欢迎感谢小伙伴点赞、关注,赠人玫瑰,手有余香!蟹蟹!