介绍

对于dijkstra算法,很多人可能感觉熟悉而又陌生,可能大部分人比较了解bfs和dfs,而对dijkstra和floyd算法可能知道大概是图论中的某个算法,但是可能不清楚其中的作用和原理,又或许,你曾经感觉它很难,那么,这个时候正适合你重新认识它。

Dijkstra能是干啥的?

就拿上图来说,假如直到的路径和长度已知,那么可以使用dijkstra算法计算南京到图中所有节点的最短距离。

单源什么意思?

  • 从一个顶点出发,Dijkstra算法只能求一个顶点到其他点的最短距离而不能任意两点。

bfs求的最短路径有什么区别?

  • bfs求的与其说是路径,不如说是次数。因为bfs他是按照队列一次一次进行加入相邻的点,而两点之间没有权值或者权值相等(代价相同)。处理的更多是偏向迷宫类的这种都是只能走邻居(不排除特例)。

Dijkstra在处理具体实例的应用还是很多的,因为具体的问题其实带权更多一些。

算法分析

对于一个算法,首先要理解它的运行流程
对于一个Dijkstra算法而言,前提是它的前提条件和环境:

  • 一个连通图,若干节点,节点可能有数值,但是路径一定有权值。并且路径不能为负。否则Dijkstra就不适用。

Dijkstra的核心思想是贪心算法的思想。不懂贪心?

对于贪心算法,在很多情况都能用到。下面举几个不恰当的例子!

不难发现上面的策略虽然没有很强的理论数学依据,或者不太好说明。但是事实规律就是那样,并且对于贪心问题大部分都需要排序,还可能会遇到类排序。并且一个物体可能有多个属性,不同问题需要按照不同属性进行排序,操作。

那么我们的Dijkstra是如何贪心的呢?对于一个点,求图中所有点的最短路径,如果没有正确的方法胡乱想确实很难算出来,并且如果暴力匹配复杂度呈指数级上升不适合解决实际问题。

那么我们该怎么想呢?

Dijkstra算法的前提

  1. 首先,Dijkstra处理的是带正权值的有权图,那么,就需要一个二维数组(如果空间大用list数组)存储各个点到达()的权值大小。(邻接矩阵或者邻接表存储)
  2. 其次,还需要一个boolean数组判断那些点已经确定最短长度,那些点没有确定。int数组记录距离(在算法执行过程可能被多次更新)。
  3. 需要优先队列加入已经确定点的周围点。每次抛出确定最短路径的那个并且确定最短,直到所有点路径确定最短为止。

简单的概括流程为

  • 一般从选定点开始抛入优先队列。(路径一般为0),boolean数组标记0的位置(最短为0) , 然后0周围连通的点抛入优先队列中(可能是node类),并把各个点的距离记录到对应数组内(如果小于就更新,大于就不动,初始第一次是无穷肯定会更新),第一次就结束了
  • 从队列中抛出距离最近的那个点B第一次就是0周围邻居)。这个点距离一定是最近的(所有权值都是正的,点的距离只能越来越长。)标记这个点为true并且将这个点的邻居加入队列(下一次确定的最短点在前面未确定和这个点邻居中产生),并更新通过B点计算各个位置的长度,如果小于则更新!
  • 重复二的操作,直到所有点都确定。

算法实现

package 图论;

import java.util.ArrayDeque;
import java.util.Comparator;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Scanner;

public class dijkstra {
    static class node
    {
        int x; //节点编号
        int lenth;//长度
        public node(int x,int lenth) {
            this.x=x;
            this.lenth=lenth;
        }
    }

    public static void main(String[] args) {

        int[][] map = new int[6][6];//记录权值,顺便记录链接情况,可以考虑附加邻接表
        initmap(map);//初始化
        boolean bool[]=new boolean[6];//判断是否已经确定
        int len[]=new int[6];//长度
        for(int i=0;i<6;i++)
        {
            len[i]=Integer.MAX_VALUE;
        }
        Queue<node>q1=new PriorityQueue<node>(com);
        len[0]=0;//从0这个点开始
        q1.add(new node(0, 0));
        int count=0;//计算执行了几次dijkstra
        while (!q1.isEmpty()) {
            node t1=q1.poll();
            int index=t1.x;//节点编号
            int length=t1.lenth;//节点当前点距离
            bool[index]=true;//抛出的点确定
            count++;//其实执行了6次就可以确定就不需要继续执行了  这句可有可无,有了减少计算次数
            for(int i=0;i<map[index].length;i++)
            {
                if(map[index][i]>0&&!bool[i])
                {
                    node node=new node(i, length+map[index][i]);
                    if(len[i]>node.lenth)//需要更新节点的时候更新节点并加入队列
                    {
                        len[i]=node.lenth;
                        q1.add(node);
                    }
                }
            }
        }
        for(int i=0;i<6;i++)
        {
            System.out.println(len[i]);
        }
    }
    static Comparator<node>com=new Comparator<node>() {

        public int compare(node o1, node o2) {
            return o1.lenth-o2.lenth;
        }
    };

    private static void initmap(int[][] map) {
        map[0][1]=2;map[0][2]=3;map[0][3]=6;
        map[1][0]=2;map[1][4]=4;map[1][5]=6;
        map[2][0]=3;map[2][3]=2;
        map[3][0]=6;map[3][2]=2;map[3][4]=1;map[3][5]=3;
        map[4][1]=4;map[4][3]=1;
        map[5][1]=6;map[5][3]=3;
    }
}

执行结果:

当然,dijkstra算法比较灵活,实现方式也可能有点区别,但是思想是不变的:一个贪心思路。dijkstra执行一次就能够确定一个点,所以只需要执行点的总和次数即可完成整个算法。

欢迎感谢小伙伴点赞、关注,赠人玫瑰,手有余香!蟹蟹!

02-11 22:28