洛谷 P1579.哥德巴赫猜想(升级版)
题目背景
1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:任何一个大于9的奇数都可以表示成3个质数之和。质数是指除了1和本身之外没有其他约数的数,如2和11都是质数,而6不是质数,因为6除了约数1和6之外还有约数2和3。需要特别说明的是1不是质数。
这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。
从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
题目描述
现在请你编一个程序验证哥德巴赫猜想。
先给出一个奇数n,要求输出3个质数,这3个质数之和等于输入的奇数。
输入格式
仅有一行,包含一个正奇数n,其中 9 < n < 20000
输出格式
仅有一行,输出3个质数,这3个质数之和等于输入的奇数。相邻两个质数之间用一个空格隔开,最后一个质数后面没有空格。如果表示方法不唯一,请输出第一个质数最小的方案,如果第一个质数最小的方案不唯一,请输出第一个质数最小的同时,第二个质数最小的方案。
输入输出样例
输入样例#1
2009
输出样例#1
3 3 2003
题目思路
#include<bits/stdc++.h>
using namespace std;
const int N = 2e4+10;
int a[N]; //质数打表
bool zs(int n)
{
if(n<2)return false;
if(a[n]!=0)
return a[n]==1;
int num = sqrt(n);
for(int i=2;i<=num;i++)
{
if(!(n%i)){
a[n] = -1;
return false;
}
}
a[n] = 1;
return true;
}
int main()
{
int n,flag = 0;
scanf("%d",&n);
for(int i=2;i<=n/2;i++)
{
if(zs(i))
{
for(int j=2;j<=(n-i)/2;j++)
{
if(zs(j)&&zs(n-i-j)){
printf("%d %d %d\n",i,j,n-i-j);
return 0;
}
}
}
}
return 0;
}